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Abstract. In this tutorial chapter we present a guide to building a robot
through 11 tutorials. We prescribe simple software solutions to build a
wheeled robot and manipulator arm that can autonomously drive and be
remotely controlled. These tutorials are what worked for several teams at
the University Rover Challenge 2017 (URC). Certain tutorials provide
a quick start guide to using existing Robot Operating System (ROS)
tools. Others are new contributions, or explain challenging topics such
as wireless communication and robot administration. We also present
the results of an original survey of 8 competing teams to gather infor-
mation about trends in URC’s community, which consists of hundreds
of university students on over 80 teams. Additional topics include satel-
lite mapping of robot location (mapviz), GPS integration (original code)
to autonomous navigation (move base), and more. We hope to promote
collaboration and code reuse.

Keywords: Outdoor robot, Arm control, Autonomous navigation, Tele-
operation, Panoramas, Image Overlay, Wireless, GPS, Robot administra-
tion

1 Introduction

The University Rover Challenge (URC) is an engineering design competition
held in the Utah desert that requires large teams of sometimes 50 or more uni-
versity students. Students spend a year preparing and building from scratch a
teleoperated and autonomous rover with an articulated arm. This chapter gives
an overview of eight rover designs used at the URC, as well as a deep dive into
contributions from three design teams: Team R3 (Ryerson University), Team
Continuum (University of Wroclaw), and Team ITU (Istanbul Technical Univer-
sity). We detail how to build a rover by piecing together existing code, lowering
the challenges for new Robot Operating System (ROS)[14] users. We include 11
short tutorials, 7 new ROS packages, and an original survey of 8 teams after
they participated in the URC 2017 rover competition.
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1.1 Motivation

At URC there is a rule limiting the budget that is allowed to be spent by teams
on their rover to $15,000 USD.1 Therefore students typically engineer parts and
software themselves rather than buying. This makes ROS’s free and open source
ecosystem a natural fit for teams to cut costs and avoid re-engineering common
robotics software. At URC 2017, Team R3 spoke to several teams who are not
using ROS but want to, and others who want to expand their use of it.

Several authors of this chapter joined URC because they are passionate about
hands on learning and ROS. After our URC experience we are even more confi-
dent that ROS is an incredible framework for building advanced robotics quickly
with strong tooling that makes administering ROS robots enjoyable.

Our motivation comes from a passion to share lessons that enable others
to build better robots. Software is eating the world and there is a large positive
impact that can be made in the application of software interacting with the phys-
ical world. Our software is freely shared so it can have the largest unencumbered
impact and usefulness.

1.2 Main Objectives

Aim one is to help ROS users quickly learn new capabilities. Therefore, our con-
tributions are in the form of tutorials. These are made relevant and interesting
by giving them in the context of the URC competition. Readers can better as-
sess the usefulness of the tutorials by comparing solutions given to the other
approaches that our survey of eight other teams has revealed in section 3. Many
sections of this chapter give detailed descriptions of software implementations
used at the competition by 3 different teams: Team R3 from Ryerson University
in Toronto, Canada, and Team Continuum from the University of in Wroclaw,
Poland, and the ITU Rover Team from Istanbul Technical University in Turkey.
Original ROS packages are documented with examples, installation and usage in-
structions, and implementation details. At the end of the chapter readers should
have a better sense of what goes into building a rover and of the University
Rover Challenge (URC) that took place in Utah, 2017.

1.3 Overview of Chapter

Following the introduction and background sections, a wide angle look at rover
systems with a survey and two case-studies is presented. Then specific tutorials
delve into new packages and implementations mentioned in the case studies and
team survey.

Section 2 “Background” provides an explanation of the URC rover competi-
tion and some of its rules.

Section 3 “Survey of URC Competing Teams” presents the results of an
original survey of 8 teams who competed at URC 2017. It details each team’s

1URC 2017 Rules http://tinyurl.com/urc-rules
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rover computer setup, ROS packages, control software, and avionics hardware
for communication, navigation, and monitoring.

Section 4 “Case Study: Continuum Team” gives a case-study of their rover
and what lead them to a second place result at the URC 2017 competition.

Section 5 “Case Study: Team R3” gives a case-study of the ROS software
architecture used in Team R3’s Rover. It provides the big picture for some of
the tutorials in later sections which dive into more detailed explanations.

Section 6 “Tutorial: Autonomous Waypoint Following” details the usage of a
new, original ROS package that will queue multiple move base navigation goals
and navigate to them in sequence. This helps URC teams in the autonomous
terrain traversal missions.

Section 7 “Tutorial: Image Overlay Scale and Compass” details a new, orig-
inal ROS package that meets one of the URC requirements to overlay an image
of a compass and scale bar on imagery produced by the rover. It is intended to
add context of the world around the rover.

Section 8 “Tutorial: A Simple Drive Software Stack” details the usage and
technical design of a new, original ROS package that will drive PWM motors
given input from a joystick in a fashion known as skid steering. The new package
contains Arduino firmware and controls a panning servo so that a teleoperator
can look around with a camera while driving.

Section 9 “Tutorial: A Simple Arm Software Stack” details the usage and
technical design of a new, original ROS package that will velocity control arm
joint motors, a gripper, and camera panning. The new package contains Arduino
firmware to control PWM motors and a servo for the camera.

Section 10 “Tutorial: Autonomous Recovery after Lost Communications”
details the technical design and usage of a new, original ROS package that uses
ping to determine if the robot has lost connection to a remote base station. If
the connection is lost then motors will be stopped or an autonomous navigation
goal will be issued so as to reach a configurable location.

Section 11 “Tutorial: Stitch Panoramas with Hugin” details the usage and
technical design of a new, original ROS package that will create panoramic im-
ages using ROS topics. At the URC competition teams must document locations
of interest such as geological sites with panoramas.

Section 12 “Tutorial: GPS Navigation Goal” details the usage and technical
design of a new, original ROS package that will convert navigation goals given
in latitude and longitude GPS coordinates to ROS frame coordinates.

Section 13 “Tutorial: Wireless Communication” gives a detailed explanation
of the primary and backup wireless communication setup used between ITU
Rover Team’s rover and base station for up to 1 km in range.

Section 14 “Tutorial: Autonomous Navigation by Team R3” explains the
technical architecture of the autonomous system used at URC 2017 by Team R3
from Ryerson University, Toronto. It is based on the ZED stereo camera, the
RTAB-Map ROS package for simultaneous localization and mapping (SLAM),
and the move base navigation ROS package.
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Section 15 “Tutorial: MapViz Robot Visualization Tool” presents the MapViz
ROS package and illustrates how a top-down, 2D visualization tool with support
for satellite imagery can be useful for outdoor mobile robotics and URC. Our
original Docker container created to ease the use of MapViz with satellite imagery
is also documented.

Section 16 “Tutorial: Effective Robot Administration” discusses a helpful
pattern for robot administration that makes use of tmux and tmuxinator to
roslaunch many ROS components in separate organized terminal windows. This
makes debugging and restarting individual ROS components easier.

Section 17 “Conclusion” ends with the main findings of the chapter and with
ideas for further collaboration between URC teams and beyond.

1.4 Prerequisite Skills for Tutorials

The tutorials in this chapter expect the following skills at a basic level.

– ROS basics (such as roslaunch)

– Command line basics (such as bash)

– Ubuntu basics (such as apt package manager)

2 Background

2.1 About the University Rover Challenge

The University Rover Challenge is an international robotics competition run
annually by The Mars Society. Rovers are built for a simulated Mars environment
with challenging missions filling three days of competition. It is held in the
summer time at the very hot Mars Desert Research Station, in Utah. There
were 35 rovers and more than 500 students from seven countries that competed
in the 2017 competition.2 The winning team’s rover can be seen in Fig. 1.

Rovers must be operated remotely by team members who cannot see the
rover or communicate with people in the field: violations are punished by penalty
points. Teams must bring and setup their own base station in a provided trailer
or shelter and a tall communication mast nearby for wireless communication to
the rover. The rover may have to travel up to 1km and even leave direct line of
sight to the wireless communication mast.

The idea is that the rover is on Mars (the Utah desert serves as a substitute)
performing scientific experiments and maintenance to a Mars base. An assump-
tion is made that the rovers are being operated by astronauts on or orbiting Mars
rather than on Earth and therefore there is no major communication delay.

2URC 2017 competition score results and standings http://urc.marssociety.org/
home/urc-news/americanroverearnsworldstopmarsrovertitle
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Fig. 1. A URC competition judge watches as the winning team of 2017, Missouri
University of Science and Technology, completes the Equipment Servicing Task.

Fig. 2. Group photo of URC 2017 finalists at the Mars Desert Research Station in
Utah.
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2.2 University Rover Challenge Tasks

The URC rules detail four tasks.3 The science cache task involves retrieving and
testing subsurface soil samples without contamination. For this the rover must
have an auger to drill into the hard desert soil. After the science task teams
present to a panel of judges about their scientific findings. The evidence col-
lected by the rover’s cameras, soil collection, and minimum three 3 sensors (e.g.
temperature, humidity, pH) is presented in a way that purports the possibility
of water and life on Mars.

The extreme retrieval and delivery task requires teams to search out tools
and marked rocks in the desert and then use an arm on the rover to bring them
back to the base station. The equipment servicing task has teams perform finer
manipulations with their rover arm to start a fake generator. This consists of
pouring a fuel canister, pressing a button, flicking a switch and other manipula-
tion tasks.

In the autonomous task, teams must start with their rover within 2 m of the
designated start gate and must autonomously navigate to the finish gate, within
3 m. Teams are provided with GPS coordinates for each gate and the gates
are marked with a tennis ball elevated 10 cm to 50 cm off the ground and are
not typically observable from a long distance. Teams may conduct teleoperated
excursions to preview the course but this will use their time. Total time for this
task is 75 minutes per team and the total distance of all stages will not exceed
1000 m.

Teams must formally announce to judges when they are entering autonomous
mode and not transmit any commands that would be considered teleoperation,
although they can monitor video and telemetry information sent from the rover.
On-board systems are required to decide when the rover has reached the finish
gate.

The newer 2018 rules4 are very similar, but with more difficult manipulation
tasks such as typing on a keyboard and a more demanding autonomous traversal
challenge that explicitly calls for obstacle avoidance, something that Team R3
had last year and is explained in detail in section 14.

2.3 Planetary Rovers beyond the Competition

Although the University Rover Challenge (URC) competition is a simulation of
planetary rovers for Mars, there are significant differences between student built
URC rovers and realistic planetary rovers. For example URC teams are limited in
budget, manpower and engineering knowledge level. The Martian environmental
also pose challenging conditions such as radiation, low atmospheric pressure,
very low oxygen levels, and a lack of communication and navigation systems
found on Earth such as GPS.

3URC 2017 Rules http://tinyurl.com/urc-rules
4URC 2018 Rules http://tinyurl.com/urc-rules2018
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The following paragraphs compare the systems of NASA’s Curiosity
rover[10][9] and URC rovers. When comparing, the technology difference be-
tween the production year of Curiosity (2011) and now (2017) should also be
kept in mind.

On Board Computer (OBC) The Curiosity Rover carries redundant 200MHz
BAE RAD750 CPUs, which is a special CPU that is designed to work in high
radiation environments and has 256MB RAM, 2GB Flash, 256KB EEPROM.
The CPU runs a real time operating system called VxWorks.[15][4] Interestingly,
most of the URC rovers use on board computers that have more features and
computing power than the planetary rovers due to the improvement of technol-
ogy over the years. For example, Team R3 uses a Jetson TX1, running Ubuntu
16.04 which has 4GB RAM.

Autonomous Navigation Although URC rovers and Curiosity have several
common sensors, the lack of GPS, harsh environmental conditions at Mars leads
their respective autonomous navigation algorithms to built and work differently.
Both of them use their Internal Measurement Units (IMU) and cameras to nav-
igate, combining the odometry from internal sensors, visual odometry and some
custom image processing algorithms to reach their target. The difference is that
while URC rovers can rely on their GPS to navigate, Curiosity must rely on
its position data from internal sensors only. Also, as Curiosity is navigating on
the harsh Mars terrain it decides to navigate through the better terrain using a
complex system of image processing algorithms.[8]

Cameras Curiosity has 17 cameras that are used for various objectives, such
as obstacle avoidance, navigation and science. Some of these cameras are very
high resolution due to their scientific intent.[8] URC rovers generally have fewer
cameras, such as 2 or 3, and less resolution is available because of cost limitations
for teams at the competition.

Wireless Communication Curiosity can communicate directly with the Earth
with its X-band (7-12 GHz) communication modules or it can communicate with
satellites orbiting Mars, specifically the Mars Reconnaissance Orbiter (MRO) or
Mars Odyssey Orbiter, over a 400MHz UHF link.[8] URC rovers generally prefer
a 2.4 GHz UHF link to communicate with their ground stations. This difference
is because Curiosity has to communicate with Earth from an average distance
of 225 million km, while URC rovers has to communicate with their respective
ground stations from a maximum of 1 km.

Power Unlike most planetary rovers which use solar power, Curiosity carries
4.8 kg of radioactive plutonium-238 to provide energy to its instruments for 14
years.[8] On the other hand, URC rovers are generally powered with Li-Po or
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Li-Ion batteries that usually lasts for several hours as the maximum mission time
is limited and there are breaks between missions, unlike Curiosity’s years long
mission.

3 Survey of URC Competing Teams

Fig. 3 shows eight teams that were surveyed for their rover computer setup, ROS
packages, control software, and avionics hardware (for communication, naviga-
tion, and monitoring). The team survey results have been edited and condensed
for publication.

This survey serves the purpose of providing a broad overview of components
and rover development styles before describing in subsequent sections a few
detailed implementations provided by the teams who authored this chapter:
Team R3 (Ryerson University), Team Continuum (University of Wroclaw), and
Team ITU (Istanbul Technical University).

Several trends that emerged from the survey are interesting to note. Of the
8 teams surveyed, teams that used Raspberry Pis or STM microcontrollers all
placed better than teams that used Arduinos or Teensy microcontrollers. For
teleoperator input, Logitech controllers or joysticks were extremely popular and
used by all teams. Teams most often expressed difficulty using IMUs or regretted
not testing their rover enough. A wide variety of autonomous systems were
experimented with: from custom OpenCV implementations, to using existing
vision-based obstacle avoidance software (RTAB-Map), to GPS only approaches.

The winning approach of the Mars Rover Design Team from Missouri Uni-
versity of Science and Technology utilized a large number of custom solutions.
Their high quality solutions and extremely comprehensive testing is exempli-
fied in just one case by developing a custom UDP communication software.
Dubbed “RoveComm”, their communication system can reduce latency and in-
crease video quality and was key to successful teleoperation.
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 Mars Rover 

Design Team 
Team 

Continuum 

Cornell Mars 

Rover 

ITU Rover 

Team 

UWRT 

Robotics 

Ryerson Rams 

Robotics (R3) 

SJSU 

Robotics 

Team 

Anveshak 

School Name 

 

Missouri 

University of 

Science and 

Technology 

 

University of 

Wroclaw, 

Poland 

 

Cornell 

University, USA 

 

Istanbul 

Technical 

University, 

Turkey 

 

University of 

Waterloo, 

Canada 

 

Ryerson 

University, 

Canada 

 

San Jose State 

University, USA 

 

Indian Institute 

of Technology, 

Madras 

Final Score 

(Rank) 
403.4 (1) 336.3 (2) 264.1 (11) 243.1 (13) 225.7 (15) 190.9 (21) 164.3 (26) 151.4 (29) 

Computers on 

rover 

 

Raspberry Pi, 

TIVA-C 

Connected, 

MSP-432, 

Launchpad-

C2000 

A Banana Pi,  

3x Raspberry Pi, 

1x Jetson 

(optionally), 

multiple STM 

microcontrollers 

A Intel NUC 

N82E16856102053, 

and 8x PIC32 

MX530F128H 

microcontroller 

A Raspberry Pi 

3 with 64gb SD 

card running 

Ubuntu 16.04,  

STM32F103 

microcontrollers 

A FitPC 

miniature 

fanless PC 

A Jetson TX1 

with 32 GB SD 

card, Ubuntu 

16.04, and 2x  

Arduino Mega 

microcontrollers 

Odroid XU4,  

and Teensy 3.2 

microcontroller 

A Thinkpad 

T460 laptop 

running Ubuntu 

14.04, and 

Arduino 

microcontrollers 

Joysticks 

 

Xbox Controller, 

Logitech Extreme 

3D Pro 

Logitech 

Gamepads 

Logitech Gamepad 

F310, 

Thrustmaster VG 

T16000M FCS 

Joystick 

2x Logitech 

Extreme 3D Pro, 

one for driving 

and one for the 

arm 

2x Logitech 

joysticks for the 

arm, and an Xbox 

controller for 

driving 

Xbox 360 

Controller for 

driving, 
Logitech Extreme 

3D Pro for arm 

Logitech Extreme 

3D Pro Joystick 

2x Logitech F310 

Gamepads, one 

for telemetry 

control and one 

for  auger/arm 

Cameras 

 

Lorex, Sony 

EFFIO CCD 

Superhead 

Standard 

Raspberry Pi 

cameras and 

two with wide 

angle lenses 

Logitech HD 

Laptop 

Webcam C615, 

x264 video 

encoding 

5 IP cameras used 

for security and an 

Xbox 360 Kinect 

v1 for image 

processing and 

fake laser 

2x Pointgrey 

cameras, 1x 

USB Camera 

ZED depth 

camera, 

2x BL170 

degree fisheye 

cameras 

CCD 700TVL 

Composite 

video cameras 

(RunCam Swift 

2.0) 

SJ-CAM, IP-Camera, 

and a Logitech 

webcam. Cameras 

were interfaced using 

the "motion" Linux 

package, though it 

lags and quality was 

not great 
 

MTK 3339 Ublox GPS USGlobalsat 

BU-353-S4 

Radiolink M8N Microstrain Linx FM Series 

GPS Receiver 

UBlox GPS 7 ROS All Sensors 

Android App 

IMU  

 

LSM9DS1 Tried multiple 

units, nothing 

really worked 

SparkFun SEN-

13762, chip: 

MPU-9250 

GY-80 Microstrain MPU-9250 

module, couldn’t 

get it working 

BNO055 ROS All Sensors 

Android App on 

Moto Play G4 phone 

Software 

Packages 

 

Energia, TI 

motorware, 

OpenCV 

ROS kinetic with 

joint_state_ 

controller, rviz, rqt, 

robot_localization, 

and more 

ROS packages 

control-toolbox, dwa-

local-planner, gazebo-

ros-pkgs, gpsd-client, 

image-transport-

plugins, image-rotate, 

pid, ros-controllers, 

spacenav-node, usb-

cam, rplidar-ros, and 

gmapping 

ROS Kinetic with 

packages 

depthimagetolasers

can, huksy_control, 

move_base, 

actionlib, cv_bridge, 

image_transport 

and more 

ROS Indigo with 

packages 

socket_canbridge, 

rosbridge_server, 

teleop_twist_joy, 

and more 

ROS Kinetic with 

packages 

rqt_image_view, 

rtabmap, move_base, 

mapviz, joy, 

rtimulib_ros, 

zed_ros_wrapper, 

rgbd_odometry, 

usb_cam, and 

nmea_navsat_driver 

Custom 

framework 

RoverCore-S, 

RoverCore-F, 

RoverCore-MC,  

built in house 

ROS Kinetic and 

Indigo with 

packages joy, 

rosserial, amcl, and 

robot_localization 

Autonomous 

System 

 

OpenCV, 

Python  

Implemented on our 

own using GPS and 

distance to the goal. A 

control PID with some 

constraints and logic 

to back up if 

necessary to leads us 

to a given point. Goals 

are set when previous 

one was reached. 

ROS move_base ROS move_base and 

as a backup waypoint 

navigation using yaw 

and gps. Also, a C++ 

OpenCV tennis ball 

finding algorithm on 

top of ROS. We could 

find and navigate to 

the tennis ball from 

8m.  

move_base and 

robot_ 

localization 

ZED depth camera, 

rtabmap, move_base. 

We first teleoperate to 

build a SLAM map and 

find the tennis ball by 

human eye, then we 

go back to the start 

and set an 

autonomous goal in 

the SLAM map. 

GPS and drive 

system, no 

need for 

anything else 

We had plans of 

using AMCL and 

sensor fusion by 

making use of the 

existing packages 

in ROS, but ran 

out of time. 

Arm Control 

Software 

 

Custom solution in 

Energia. interfaced 

with custom control 

software RED (Rover 

Engagement Display) 

at base station 

Tried MoveIt 

but 

implemented 

our own 

Some experiments 

with MoveIt inverse 

kinematics but used 

forward kinematics 

at competition 

Wrote our own 

inverse kinematics 

and simulation in 

Unity using C# 

Wrote our own 

PWM library for 

arm motors 

We had plans to use 

MoveIt but due to lack 

of testing time used 

velocity control for 

each joint mapped to 

a joystick 

We wrote 

firmware into our 

framework for 

our Teensy 3.2 

MCUs 

Open-loop 

control with 

commands sent 

to an Arduino 

 

GPS 

Fig. 3. Survey of eight rover teams that competed in URC 2017.
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Mars Rover 

Design Team  
Team 

Continuum 
Cornell 

Mars Rover 

ITU Rover 

Team 

UWRT 

Robotics 
Ryerson Rams 

Robotics (R3) 

SJSU 

Robotics 

Team 

Anveshak 

School Name 

 

Missouri 

University of 

Science and 

Technology 

 

University of 

Wroclaw, 

Poland 

 

Cornell 

University, USA 

 

Istanbul 

Technical 

University, 

Turkey 

 

University of 

Waterloo, 

Canada 

 

Ryerson 

University, 

Canada 

 

San Jose State 

University, USA 

 

Indian Institute 

of Technology, 

Madras 

Final Score (Rank) 403.4 (1) 336.3 (2) 264.1 (11) 243.1 (13) 225.7 (15) 190.9 (21) 164.3 (26) 151.4 (29) 

Wireless 

radios and 

antennas 

 

Ubiquiti 

900MHz, 

Cloverleaf 

MIMO  antenna 

on rover and 

dual polarity 

yagi at base 

station 

Ubiquiti Bullet Base station 

antenna was the 

Ubiquiti AM-2G15-

120, rover antenna 

was the Super 

Power Supply 

B00O7ZEK7S, rover 

and base transceiver 

was the Ubiquiti 

Rocket M2 

Microhard pDDL2450 

could achieve 1km in 

non-line of sight with 

5 dBi omnidirectional 

antennas. We also 

backed up comms 

except the cameras 

and the TCP link via a 

RF link with 433 MHz 

LoRa module.  

2.4 GHz and 

900 MHz 

antennas 

Ubiquiti M2 

Rockets 2.4GHz 

802.11n MIMO 

paired with TP-

Link 2408CL 

omnidirectional 

antennas 

Ubiquiti 

Rockets M900 

and the 

directional 

Ubiquiti Loco 

M900 

TP-Link WA 

5210 2.4GHz 

with included 

directional 

antenna 

Battery 

System 

 

LGChem18650HE4 

Lithium Ion, 80 set 

up in custom pack, 

10 set in parallel 

with 8 of those 

sets in series 

Custom LiPo 

modules 

1x MaxAmps 7S 

LIPO Battery 

Tattu 6 cell LiPo 

22Ah  

1x Tattu 6 cell 

22Ah Tattu LiPo 

Panasonic NCR18650BD 

3.7V 3200mAh Li-

Ion 4 batteries in 

series to achieve 

14.8V and 6 in 

parallel to achieve 

a 19.2Ah 

3x Zippy LiPos 

7S with a power 

board we 

designed 

3x 24V LiPo 

batteries for 

drive,  

2x 12V LiPo 

batteries for 

auger/arm 

Wired 

Communication  

Protocols

 

I2C, RS232, 

RoveComm 

(Custom UDP) 

CAN built-into the 

bananapi with two 

networks, one for 

driving wheels, 

another for the 

manipulator 

CAN bus for 

interboard, 

UART for Intel 

NUC to 

microcontroller 

I2C for sensors, 

USB for 

Raspberry Pi to 

microcontroller 

CAN for most 

things, USB for 

drive motor 

controller, 

I2C/SPI for 

sensors 

I2C sensors, USB 

for cameras, USB 

serial for Arduinos, 

UART for GPS, 

PWM for motor 

controllers 

I2C, UART, 

Bluetooth 

(RFCOMM), SPI, 

PWM, PPM 

Serial from the 

main computer 

to the various 

Arduinos 

Sensor 

Fusion 

 

Kalman filtering 

and custom 

filtering 

robot_ 

localization 

robot_ 

localization 

robot_ 

localization, 

custom EKF 

backup in 

microcontrollers 

robot_ 

localization 

robot_ 

localization, didn’t 

end up using due 

to IMU issues 

None None 

Team 

Strengths

 

Manufacturing 

capabilities and access 

to programs that 

allow us to have many 

custom components 

on our rover. 

Drive and manipulator 

controls. Also, I think 

being just 10 people 

ups our motivation a 

lot. Everyone has 

important work to do 

Modularity Our wireless 

communication 

modules. We never 

lost control or 

communication to our 

rover at the 

competition. 

A lot of different 

experiences from 

team members 

because of our 

coop program. 

Tmux for terminal 

organization, 

keeping things 

simple, team 

dedication, and 

keeping it fun. 

The absolute 

passion from each 

and every member 

of our team as well 

as our team manage 

system. 

Dedicated team, 

always ready to learn 

new things, not shy of 

challenges. We made 

great strides in 

learning ROS in a 

matter of 3 months. 

Improvements 

for next year

 

Fix bugs and flaws we 

found while at URC 

2017 and push the 

boundaries of 

innovation as we build 

a new rover. 

More field tests of 

the whole Rover. 

Ease of use: easy way 

to launch and monitor 

the entire system. Live 

sensor diagnostics 

and robust CV. 

I really want to 

add machine 

learning for 

finding the tennis 

ball from further. 

Improve our 

project 

management. 

Clearly labelled wires 

and pin outs, avoid 

USB hubs, and a 

geologist team 

member. 

Secure bigger 

budget, start earlier, 

and update our 

technologies. 

More development 

time, exploit ROS even 

more, test things 

more often, more 

collaboration with 

other teams.  

Source code 

 

github.com/ 

mst-mrdt 

Inverse kinematics 

only gist.github.com/ 

danielsnider/5181ca50

cef0ec8fdea5c11279a

9fdbc 

https://drive.google.

com/open?id=0B1r9

QYTd8YNrWXNjNm

dtcGlwMjQ 

github.com/ 

itu-rover
 

github.com/ 

uwrobotics 

github.com/ 

teamr3/ 

URC
 

github.com/ 

kammce/ 

RoverCore-S 

github.com/ 

Team-Anveshak/ 

rover-control
 

 

Fig. 4. Survey of eight rover teams that competed in URC 2017. Cont.
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4 Case Study: Continuum Team

In the following section a case study is presented of the Continuum team (Univer-
sity of Wroclaw) and their rover, Aleph1. It is particularly interesting because
they managed to score second place during the URC 2017 and had multiple
other successes since they debuted in 2015. Michal Barcis decided to share with
us some insights about their rover and his opinions on the competition.

The differences between team Continuum and other participants will be iden-
tified in order to find the key strengths that supported their achievements.

4.1 Recipe for success

The teams, especially the ones that managed to place themselves in the first
ten places during the competition, do not differ very much. Both software and
hardware solutions are similar. Many teams also decided to implement programs
using ROS. We will try to identify some features that distinguish the Continuum
team and let the reader decide which of them, if any, were the most advantageous.

One of the key differences is the size of the team. On average there were only
around 12 members working on the rover during the period between 2014 and
2017. This makes the Continuum one of the smallest groups on the URC. Such
an approach has both positive and negative effects: the smaller workforce means
each person has more work to do and there is less shared knowledge, but also
makes each member more important and increases motivation. Each of the key
components in the rover had a person responsible for it.

There is one especially interesting hardware component that the Continuum
team decided to do a bit differently than other teams and the team was often
asked about. It is the choice of cameras. Aleph1 is equipped with inexpensive
Raspberry Pi cameras[2]. Although much better devices in terms of specification
are available on the market, those cameras had a big advantage it was possible
to easily integrate and customize them using raspberry pi. Therefore, it was easy
for the team to experiment with different configurations and find a compromise
between good quality and low latency.

The team was also asked what would be one thing they wished to do differ-
ently next time and the answer was always the same: more field tests with all
components of the rover. This is also the advice that was often given by other
teams and it seems very reasonable. By testing the rover with similar tasks as in
the competition, it is possible to identify problems sooner and fix them. It also
forces the team to complete the work sooner. Of course, to do that properly, a
lot of self-control and good organization of the whole group is necessary.

4.2 Rover Manipulator Arm

In the following section, the robotic arm (or “manipulator”) of the Aleph1 rover
is described. Team Continuum decided to focus on this particular element, be-
cause it is crucial in most of the tasks at URC and at the same time is relatively
hard to control.
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Before starting the work on the arm controller, the Continuum team decided
to conduct a survey of currently available solutions of similar problems in ROS.
One of the most promising options was the MoveIt! Motion Planning Frame-
work.[13] Unfortunately, it was not designed with teleoperation in mind and the
team was unable to make it perform reasonably well with a goal specified in real
time. Therefore, they decided to implement their own solution, tailored for the
specific hardware they were using.

The main component that allows the team to control the arm is the inverse
kinematics software (python source code5). It utilizes the feedback of four relative
encoders placed on the joints of the manipulator to provide the operator two
important features: the visualization of the state of the device and the ability to
give more intuitive commands to the effector. For example, with this system it
is possible to move the gripper up, down, front or back and the speeds of all the
motors are automatically adjusted to reach given position.

Another big advantage of the arm system that proved to be very helpful
during the competition is that even when the data connection is not good, it
is possible to operate the manipulator. As soon as the instruction reaches the
rover, the arm will position itself in the correct way deterministically. This would
not be true when using an alternative way of controlling robots where the device
is performing some action for as long as a button is being pressed and the loss
of packets from the control station might change the result of the operation.
Therefore, without such a system the operator needs to depend on feedback
from cameras which might be delayed or not even available.

In figures 5, 7 and 6 the graphical user interface used to control and visualize
the state of the manipulator and the whole rover is presented. Figure 8 shows
the photo of an actual setup in the base station. The GUI is mainly used to
support the operator in collision detection and pose estimation, because the
visual feedback from the cameras often was not sufficient. The manipulator could
be controlled using a mouse, but usually a Logitech game pad was used.

Team Continuum also implemented a semi-automatic system for picking ob-
jects up and for flicking manually operated switches. The system was developed
for the European Rover Competition (ERC) 2016 because such functionality
provided bonus points. Even though it was not deployed during the URC 2017,
we have decided to present it in this section, because it is an interesting example
of a relatively simple extension to the already described system, enabling much
more complex tasks.

To get additional points during ERC 2016 the team must have positioned
the effector at least 20cm from the object it wanted to pick up or from the two-
state switch. Then, the operator should announce he is starting the autonomous
mode and put down the controller. Next, the rover should pick up the object or
actuate the switch and move back at least 20cm.

The team decided to implement a simple idea: they wanted to place the
effector exactly 20cm from the object and directly in front of it. Then, using the

5Continuum Inverse kinematics python source: https://gist.github.com/

danielsnider/5181ca50cef0ec8fdea5c11279a9fdbc
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Fig. 5. 3D visualization of the Aleph1 rover used by the team during teleoperation.

Fig. 6. Team Continuum’s GUI used to control the manipulator of the rover.
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Fig. 7. Team Continuum’s GUI used to control the movements of the rover.

Fig. 8. Team Continuum’s base station setup. A screenshot of their rover control GUI
can be seen in Fig 7.

.
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inverse kinematics system they were able to execute pre-recorded movements in
order to complete the task.

The first challenge they faced was how to measure exact distance from ob-
jects. They decided to mount two laser pointers on the effector, directed in the
direction of each other. They can be seen in multiple scenes of the recently re-
leased video from the University of Wroclaw.6 The two observable dots meet
exactly at 20cm.

The two preprogrammed arm movements were developed as follows:
For flicking switches, the effector went forward for 20cm and 2.5cm down

simultaneously, then up for 5cm and back to the initial position (20cm back and
2.5cm down). Due to the mechanical construction and the softness of the end of
the arm, Aleph1 was able to switch most of the actuators using this technique,
both very small and big ones.

For picking objects up the effector goes down 20cm, then the grip motor en-
gages until the force measurement on this motor crosses a predetermined thresh-
old, then it goes back up 20cm.

The arm of the Aleph1 rover is far from the state of the art manipulators.
It is not as fast or precise as it could be and the control sometimes is tricky.
However, even though the described solutions might seem simple it was still one
of the most advanced robotic arms in URC 2017. It is hard to construct a robust
and fail-proof manipulator that is mountable on a movable platform and meets
the strict mass and costs limits of URC. The Continuum team has proven that
this is possible and the capabilities of such a simple platform can be exceptional.

5 Case Study: Team R3

5.1 ROS Environment

At Team R3 (Ryerson University), our Kinetic ROS software built on Ubuntu
16.04 had five main systems: the drive system, the autonomous system, the
global positioning system, the visual feedback system, and the odometry system.
The full diagram, as seen in Fig. 9, has been made available in Microsoft Visio
format.7

To learn more about each software component, links to the most relevant
documentation are provided.

Autonomous System Team R3’s autonomous system consists of the ZED
depth camera and the RTAB-Map ROS package for SLAM mapping.[6] The
authors have also contributed gps goal and follow waypoints ROS packages for

6A recent video of from the University of Wroclaw of their rover has incredible
cinematography: https://www.youtube.com/watch?v=MF8DkKDBXtg

7Team R3’s rover software architecture diagram in Microsoft Visio for-
mat https://github.com/danielsnider/ros-rover/blob/master/diagrams/Rover_

Diagram.vsdx?raw=true
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added goal setting convenience. For further details about the autonomous system
see the tutorial in section 14.

Listing 1. Autonomous system software used in Team R3’s rover (numbers refer to
Fig. 9).

1 . zed−ros−wrapper ( h t tp : // w i k i . r o s . o rg /zed−ros−wrapper )
2 . f o l l ow wa y p o i n t s . py ( h t tp : // w i k i . r o s . o rg / f o l l ow wa y p o i n t s )
3 . rgbd odometry ( h t tp : // w i k i . r o s . o rg / r tabmap ros#rgbd odometry )
4 . rtabmap ( h t tp : // w i k i . r o s . o rg / r tabmap ros )
21 . g p s g o a l . py ( h t tp : // w i k i . r o s . o rg / gp s g o a l )

Odometry System At the URC competition teams are surrounded by sandy
desert terrain in Utah. As a result of wheel slippage on sand, Team R3 did not
use wheel odometry. Instead we focused on fusing IMU and visual odometry
into a more reliable position and orientation. However, because our IMU was
not working well enough to produce a good fused result, at the competition we
did not actually use the ekf localization ROS nodes of the odometry system.[12]
Instead we relied on odemetry from the rgbd odometry ROS node only and this
worked well for our autonomous system based on the RTAB-Map package.

Listing 2. Odometry software components used in Team R3’s rover (numbers refer to
Fig. 9).

5 . e k f l o c a l i z a t i o n ( h t tp : // docs . r o s . o rg / k i n e t i c / ap i / r o b o t l o c a l i z a t i o n /html
/)

6 . r t i m u l i b r o s ( h t t p s : // g i t hub . com/ r oma i n r e i g n i e r / r t i m u l i b r o s )
7 . n a v s a t t r a n s f o rm ( ht tp : // docs . r o s . org / k i n e t i c / ap i / r o b o t l o c a l i z a t i o n /html

/)
8 . nmea na v s a t d r i v e r ( h t tp : // w i k i . r o s . o rg / nmea na v s a t d r i v e r )

Drive System The drive software created by Team R3 is called simple drive
because it does not produce wheel odometry or transforms. That is left to the
autonomous system via SLAM and is more robust in slippery desert environ-
ments. The simple drive package controls the velocity of 6 motors with PWM
pulses using an Arduino dedicated to driving. The motors are D.C. motors where
the voltage on its terminals is given by the duty-cycle of the PWM signal. For
further details of the drive system see the tutorial in section 8.

Listing 3. Drive system software used in Team R3’s rover (numbers refer to Fig. 9).

9 . j o y ( h t tp : // w i k i . r o s . o rg / j o y )
10 . d r i v e t e l e o p . py ( h t tp : // w i k i . r o s . o rg / s i m p l e d r i v e#d r i v e t e l e o p )
11 . cmd vel mux . py ( h t tp : // w i k i . r o s . o rg / s i m p l e d r i v e#cmd vel mux )
12 . s i m p l e d r i v e . py ( h t tp : // w i k i . r o s . o rg / s i m p l e d r i v e#s imp l e d r i v e −1)

Navigation Stack The navigation stack used by Team R3 follows the com-
monly used development patterns of the ROS navigation stack.8 Our setting

8ROS Nagivation stack http://wiki.ros.org/navigation
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choices were inspired by RTAB-Map’s tutorial9 and we share our tips in section
14.

Listing 4. Navigation software stack used in Team R3’s rover (numbers refer to Fig.
9).

13 . move base ( h t tp : // w i k i . r o s . o rg /move base )
14 . Cost Map costmap 2d ( h t tp : // w i k i . r o s . o rg / costmap 2d )
15 . Cost Map Obs tac l e Laye r ( h t tp : // w i k i . r o s . org / costmap 2d / hydro / o b s t a c l e s )
16 . Cost Map S t a t i c Laye r ( h t tp : // w i k i . r o s . o rg / costmap 2d / hydro / s t a t i cmap )
17 . G l oba l P l anne r Navfn ( h t tp : // w i k i . r o s . o rg / nav fn )
18 . Loca l P l anne r b a s e l o c a l p l a n n e r ( h t tp : // w i k i . r o s . o rg / b a s e l o c a l p l a n n e r )

Visual Feedback To assist in teleoperation of the robot, sensors and navigation
plans were visualized in rviz for local information such as point clouds and in
mapviz for a global context that includes satellite imagery. The visual feedback
software and joystick software was executed remotely on a laptop in the control
station. The rest of software was executed on a Jetson TX1 inside the rover.

Listing 5. Visual feedback software used by Team R3 (numbers refer to Fig. 9).

19 . RViz ( h t tp : // w i k i . r o s . o rg / r v i z )
20 . r q t imag e v i ew ( h t tp : // w i k i . r o s . o rg / r q t imag e v i ew )
22 . MapViz ( h t tp : // w i k i . r o s . o rg /mapviz )
23 . usb cam ( ht tp : // w i k i . r o s . o rg /usb cam )

6 Tutorial: Autonomous Waypoint Following

The following tutorial documents an original ROS package follow waypoints that
will buffer move base goals until instructed to navigate to them in sequence.10,11

If you can autonomously navigate from A to B, then you can combine multiple
steps of A to B to form more complicated paths and use cases. For example, do
you want your rover to take the scenic route? Are you trying to reach your goal
and come back? Do you need groceries on the way home from Mars?

Team R3 (Ryerson University) has developed the follow waypoints ROS
package to use actionlib to send the goals to move base in a robust way. The code
structure of follow waypoints.py is a barebones state machine. For this reason
it is easy to add complex behavior controlled by state transitions. For modi-
fying the script to be an easy task, you should learn about the Python state
machine library in ROS called SMACH.12,13 The state transitions in the script

9RTAB-Map tutorial for the ROS navigation stack http://wiki.ros.org/

rtabmap_ros/Tutorials/StereoOutdoorNavigation
10Source code for follow waypoints ROS package https://github.com/

danielsnider/follow_waypoints
11Wiki page for follow waypoints ROS package http://wiki.ros.org/follow_

waypoints
12SMACH state machine library for python http://wiki.ros.org/smach
13One alternative to SMACH is py-trees, a behavior tree library http://py-trees.

readthedocs.io/en/devel/background.html
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occur in the order GET PATH (buffers goals into a path list), FOLLOW PATH, and
PATH COMPLETE and then they repeat.

Fig. 10. A simulated Clearpath Jackal robot navigating to one of several waypoints
displayed as pink arrows.

6.1 Usage in the University Rover Challenge (URC)

A big advantage of waypoint following is that the rover can go to points beyond
reach of Wi-Fi. In the autonomous traversal task, Team ITU’s rover at one point
lost connection but then got it back again when it reached the waypoint.

Other possible uses of waypoint following: To navigate to multiple goals in
the autonomous task with a single command (use in combination with GPS
goals, see Section 12). To search a variety of locations, ideally faster than by
teleoperation. To allow for human assisted obstacle avoidance where an obstacle
is known to fail detection.

6.2 Usage Instructions

1. Install the ROS package:

$ roslaunch follow_waypoints follow_waypoints.launch

2. Launch the ROS node:

$ roslaunch follow_waypoints follow_waypoints.launch
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Fig. 11. ROS node follow waypoints as seen in the larger architecture diagram. See
Fig. 9 for the full diagram.

3. To set waypoints you can either publish a ROS Pose message to the /initial-
pose topic directly or use RViz’s tool “2D Pose Estimate” to click anywhere.
Fig. 10 shows the pink arrows representing the current waypoints in RViz. To
visualize the waypoints in this way, use the topic /current waypoints, published
by follow waypoints.py as a PoseAarray type.

4. To initiate waypoint following send a “path ready” message.

$ rostopic pub /path_ready std_msgs/Empty -1

To cancel the goals do the following. This is the normal move base command to
cancel all goals.

$ rostopic pub -1 /move_base/cancel actionlib_msgs/GoalID --

{}

6.3 Normal Output

When you launch and use the follow waypoints ROS node you will see the fol-
lowing console output.

$ roslaunch follow_waypoints follow_waypoints.py

[INFO] : State machine starting in initial state ’GET_PATH ’ with userdata: [’
waypoints ’]

[INFO] : Waiting to receive waypoints via Pose msg on topic /initialpose
[INFO] : To start following waypoints: ’rostopic pub /path_ready std_msgs/

Empty -1’
[INFO] : To cancel the goal: ’rostopic pub -1 /move_base/cancel

actionlib_msgs/GoalID -- {}’
[INFO] : Received new waypoint
[INFO] : Received new waypoint
[INFO] : Received path ready message
[INFO] : State machine transitioning ’GET_PATH ’:’success ’-->’FOLLOW_PATH ’
[INFO] : Executing move_base goal to position (x,y): 0.0123248100281 ,

-0.0620594024658
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[INFO] : Executing move_base goal to position (x,y): -0.0924506187439 ,
-0.0527720451355

[INFO] : State machine transitioning ’FOLLOW_PATH ’:’success ’-->’PATH_COMPLETE
’

[INFO] : ###############################
[INFO] : ##### REACHED FINISH GATE #####
[INFO] : ###############################
[INFO] : State machine transitioning ’PATH_COMPLETE ’:’success ’-->’GET_PATH ’
[INFO] : Waiting to receive waypoints via Pose msg on topic /initialpose

Listing 6. Normal console output seen when launching the follow waypoints ROS
node.

7 Tutorial: Image Overlay Scale and Compass

In an effort to add context to imagery recorded by the rover, Team R3 has devel-
oped a ROS package image overlay compass and scale that can add an indica-
tion of scale and compass to images and video streams.14,15 A compass graphic
will be embedded into imagery in a way that makes north direction apparent.
A scale bar is also added so that the size of objects in images is more easily
interpreted.

Compass and scale values must be provided using standard ROS Float32
messages. Alternatively, a command interface can be used without ROS.

This tool meets one of the requirements of URC 2017 (in an automated way)
and is applied to images of soil sampling sites and scenic panoramas for scientific
and geological purposes.

This package uses the OpenCV python library to overlay a compass graphic,
the scale bar and dynamic text which is set using a ROS topic.[1]

The implementation of overlaying the compass graphic on the input image
follows these steps: 1) resize the compass graphic to be 60% the size of the
input image’s smaller side (whichever is smaller, x or y resolution). 2) Rotate
the compass to the degrees specified on the /heading input topic. 3) Warp the
compass to make it appear that the arrow is pointing into the image. This
assumes that the input image has a view forward facing with the sky in the
upper region of the image.

7.1 Usage Instructions

1. Install the ROS package:

$ sudo apt -get install ros -kinetic -image -overlay -compass -and -

scale

2. Launch the ROS node:

14Source code for the image overlay compass and scale ROS package https://

github.com/danielsnider/image_overlay_scale_and_compass
15Wiki page for the image overlay compass and scale ROS package http://wiki.

ros.org/image_overlay_scale_and_compass
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Fig. 12. Example of the image overlay compass and scale ROS package.

$ roslaunch image_overlay_compass_and_scale overlay.launch

3. Publish heading and scale values

$ rostopic pub /heading std_msgs/Float32 45 # unit is degrees

$ rostopic pub /scale std_msgs/Float32 133 # unit is

centimeters

4. View resulting image

$ rqt_image_view /overlay/compressed

7.2 Command Line Interface (CLI)

The image overlay compass and scale ROS package includes a command line
interface to invoke the program once and output an image with the overlayed
graphics. You can envoke the tool as seen in Listing 7. Note that rosrun is not
needed for this more basic form of execution.

Listing 7. Example usage of the image overlay compass and scale CLI script to save
the image overlay to disk instead of publishing to ROS.

$ roscd image_overlay_compass_and_scale

$ ./src/image_overlay_compass_and_scale/image_overlay.py --

input -image ~/mars.png --heading 45 --scale -text 133 --

output -file output.png
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Fig. 13. This is what to expect when nothing is received by the node. This is the
default published image.

8 Tutorial: A Simple Drive Software Stack

The authors have published a new ROS package, simple drive, used at the Uni-
versity Rover Challenge (URC) 2017 on Team R3’s rover.16,17 It proved simple
and effective in desert conditions. The package is simple in the sense that it
does not publish TF odometry from wheel encoders because wheels slip very
substantially on sand.

The package implements skid steering joystick teleoperation with three drive
speeds, dedicated left and right thumbsticks control left and right wheel speeds,
control of a single axis panning servo to look around the robot, a cmd vel multi-
plexer to support a coexisting autonomous drive system, and Arduino firmware
to send PWM commands to control the speed of drive motors and the position
the panning servo. For the sake of simplicity, this package does not do the fol-
lowing: TF publishing of transforms, wheel odometry publishing, PID control
loop, no URDF, or integration with ros control. Though all of these simplifica-
tions are normal best practices in sophisticated robots. The simple drive package
gives ROS users the ability to advance their robot more quickly and hopefully
to find more time to implement best practices.

This package is divided into four parts: drive teleop ROS node, cmd vel mux
ROS node, simple drive ROS node, drive firmware Arduino code. In the following
sections we will explain the main features and implementation details but for
the full ROS API documentation please see the simple drive online ROS wiki.

16Source code for simple drive ROS package https://github.com/danielsnider/

simple_drive
17Wiki page for simple drive ROS package http://wiki.ros.org/simple_drive
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Fig. 14. Architecture of the drive ROS software used by Team R3. See Fig. 9 for a
larger diagram. Note that the drive firmware microcontroller software component is
not illustrated but it is useful to note that it communicates with simple drive.py.

Fig. 15. Team R3’s rover being teleoperated by the simple drive ROS package.
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8.1 Usage Instructions

1. Install the ROS package:

$ sudo apt -get install ros -kinetic -simple -drive

2. Install the drive firmware onto a microcontroller connected to your motors and
wheels by PWM. See section 8.5 for detailed instructions. The microcontroller
must also be connected to the computer running the simple drive ROS node by
a serial connection (e.g. USB).
3. Launch the three simple drive ROS nodes separately or together using the
included drive.launch file:

$ roslaunch simple_drive drive_teleop.launch joy_dev :=/dev/

input/js0

$ roslaunch simple_drive cmd_vel_mux.launch

$ roslaunch simple_drive simple_drive.launch serial_dev :=/dev

/ttyACM0

# OR all -in-one launch

$ roslaunch simple_drive drive.launch

4. Your robot should now be ready to be driven.

8.2 drive teleop ROS Node

The drive teleop node handles joystick input commands and outputs desired
drive speeds to the cmd vel mux ROS Node. This node handles joystick inputs
in a in skid steering style, also known as diff drive or tank drive where the left
joystick thumbstick controls the left wheels and the right thumbstick controls
the right wheels. We refer to this layout as tank drive through this section.

Fig. 16. The Xbox 360 joystick button layout for the simple drive package (diagram
is available in Visio format19). Image credit: Microsoft Corporation
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More specifically, this node converts sensor msgs/Joy messages from the joy
ROS node into geometry msgs/Twist messages which represent the desired drive
speed. Figure 16 shows that there are programmed buttons to set the drive speed
to low, medium, or high speed, look around with a single axis servo, and cancel
move base goals at any moment.

Typically the servo is used to move a camera so that the teleoperator can
pan around the surroundings of the robot. The servo’s rotation speed (in degrees
per button press) can be set using the servo pan speed ROS parameter. The
minimum and maximum angle of servo rotation in degrees can be set using the
servo pan min and servo pan max ROS parameters respectively.

The button mapping was tested on an Xbox 360 controller and should require
little or no modification for similar controllers, if they support a DirectInput
mode.

8.3 cmd vel mux ROS Node

The cmd vel mux node receives movement commands on two sensor msgs/Twist
topics, one for teleoperation and one for autonomous control, typically
move base. Movement commands are multiplexed (i.e. forwarded) to a final topic
for robot consumption with a preference for human control over autonomous
commands. If any teleoperation movement command is received the cmd vel mux
node will block autonomous movement commands for a set time defined by the
block duration ROS parameter.

8.4 simple drive ROS Node

The simple drive node sends commands to motors by communicating with a
microcontroller over serial using the protocol defined by the drive firmware.
The simple drive node listens to geometry msgs/Twist for motor commands and
std msgs/Float32 for the servo position. The serial device that simple drive com-
municates with is set with the serial dev and baudrate ROS parameters.

This node is very simple and could be eliminated if your microcontroller
supports ROS. For example Arduinos can use rosserial arduino. However, this
node is written in Python so you could more easily add complex functionality
in Python and then in your microcontroller do the minimum amount of work
necessary, thus allowing for the use of smaller and more lightweight microcon-
trollers.

8.5 drive firmware Ardiuno Software

The drive firmware is software for an Arduino microcontroller and it does not
run as a ROS node. The Arduino is assumed to be dedicated to use of the

19Xbox 360 joystick button layout diagram in Visio format https:

//github.com/danielsnider/ros-rover/blob/master/diagrams/simple_drive_

Xbox_Controller.vsdx?raw=true
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simple drive package. It does the minimum amount of work possible to receive
motor commands from the simple drive node over a USB serial connection and
output voltages to digital PWM output to be received by motor controllers. We
use Spark motor controller connected to D.C. motors where the voltage on its
terminals is given by the duty-cycle of the PWM signal.

We tested on an Arduino Mega 2560 and Arduino Due, however many other
boards should work with the same code and setup steps thanks to PlatformIO.
You may need to change to change the pin numbers. Note that this software does
not stop moving the robot if no messages are received, or if communications are
lost.

Serial Communication Protocol The drive firmware uses a serial protocol
that is designed for simplicity rather than integrity of messages. As such it should
not be perceived as especially robust. However, it has worked consistently in our
experience.

Fig. 17 shows how data is encoded over the serial connection. A header com-
mand byte is transmitted followed by one or two (depending on the command)
IEEE 754 standard binary float values. Linear and angular velocity are expected
to be between -1.0 and 1.0, which are linearly scaled to motor duty-cycles by the
drive firmware.

Fig. 17. Diagram of the serial format used by drive firmware to communicate between
microcontroller and an on board computer.

An example packet following this format could be encoded as bytes: 0x00
0x3f 0x80 0x00 0x00 0x00 0x00 0x00 0x00. This would be decoded as a twist
data (leading 0x00) with 1.0 for linear velocity (0x3f 0x80 0x00 0x00) and 0.0
for angular velocity (0x00 0x00 0x00 0x00).

Tank to Twist Calculation When left and right joystick inputs are received
by the drive teleop node, representing left and right wheel linear velocities20

20Wheel linear velocity is meant to be the speed at which distance is travelled and
not rpm.
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(i.e. skid steering or differential drive), a conversion calculation to a geome-
try msgs/Twist with linear and rotational velocities is performed as seen in
equations 1 and 2. The parameter b is half of the distance between the rover’s
wheels in m, V is the linear velocity in m/s in X axis, w is the angular velocity
around Z axis in rad/s, Vr is the right wheel linear velocity in m/s and Vl is the
left wheel linear velocity in m/s.

V =
Vr + Vl

2
(1)

w =
Vr − Vl

2b
(2)

Twist to Tank Calculation When a geometry msgs/Twist containing linear
and rotational velocities is received by the drive firmware, corresponding linear
velocities are calculated for the left and right sides of wheel banks on the vehicle
as seen in equation 3 and 4.

Vl = V − wb (3)

Vr = V + wb (4)

PlatformIO We deploy the drive firmware to an Arduino microcontroller using
PlatformIO because it allows for a single source code to be deployed to multiple
platforms.21 PlatformIO supports approximately 200 embedded boards and all
major development platforms such as Atmel, ARM, STM32 and more.

8.6 Install and configure drive firmware

The following steps demonstrate how to install and configure drive firmware
component of the simple drive package. These steps were tested on Ubuntu 16.04.
1. Install PlatformIO22:

$ sudo python -c "$(curl -fsSL https ://raw.githubusercontent.

com/platformio/platformio/master/scripts/get -platformio.

py)"

# Enable Access to Serial Ports (USB/UART)

$ sudo usermod -a -G dialout <your username here >

$ curl https ://raw.githubusercontent.com/platformio/

platformio/develop/scripts /99- platformio -udev.rules > /

etc/udev/rules.d/99- platformio -udev.rules

21PlatformIO is an open source ecosystem for IoT development http://platformio.
org/

22More information on how to install PlatformIO is here http://docs.platformio.

org/en/latest/installation.html#super-quick-mac-linux
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# After this file is installed , physically unplug and

reconnect your board.

$ sudo service udev restart

2. Create a PlatformIO project23:

$ roscd simple_drive

$ cd ./ drive_firmware/

# Find the microcontroller that you have in the list of

PlatformIO boards

$ pio boards | grep mega2560

# Use the name of your board to initialize your project

$ pio init --board megaatmega2560

3. Modify the microcontroller pin layout to match wirings to motor controller
hardware. First open the file containing the pin settings then change the pin
numbers as needed:

$ vim src/main.cpp +4

1 // Pins to Left Wheels

2 #define pinL1 13

3 #define pinL2 12

4 #define pinL3 11

5 // Pins to Right Wheels

6 #define pinR1 9

7 #define pinR2 8

8 #define pinR3 7

9 // Pin to the Servo

10 #define pinServo 5

4. Depending on the specs of your motor controllers, modify the PWM settings
as needed (values are duty-cycles in microseconds):

$ vim src/main.cpp +17

1 // PWM specs of the Spark motor controller. Spark manual

:

2 // http ://www.revrobotics.com/content/docs/LK -ATFF -

SXAO -UM.pdf

3 #define sparkMax 1000 // Default full -reverse input

pulse

4 #define sparkMin 2000 // Default full -forward input

pulse

5. Deploy the drive firmware to the microcontroller:

$ pio run --target upload

6. Your robot is now ready to be driven.

23More documentation about PlatformIO: http://docs.platformio.org/en/

latest/quickstart.html
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9 Tutorial: A Simple Arm Software Stack

In this tutorial the original simple arm package is presented.24,25 The simple arm
package is teleoperation software and firmware for an arm with 6 degrees of free-
dom. Forces input by the operator’s joystick motions are converted to individual
motor velocities. We simply command motors to move by applying voltages:
there is no feedback. We do not control the arm by assigning it a position. This
makes the arm more difficult to control but simpler to implement because there
is no hardware or software to sense joint positions.

At the University Rover Competition (URC) the rover’s manipulator arm is
probably the most important component because it is needed for a large portion
of point awarding tasks. It is also very complex. Team R3 ran out of develop-
ment time to integrate position encoders with MoveIt!, so the arm software in
simple arm that went to URC 2017, and that is described here, was very simple
yet still effective.

In the science URC mission, the arm was used to drill soil and collect samples.
In the equipment servicing tasks the arm was used for unscrewing a cap, pouring
a container of liquid, and more. In the extreme delivery and retrieval mission
the arm was used to pick up and carry hand tools and small rocks.

As seen in Fig. 18, the arm is controlled by a joystick where each arm motor
is controlled by a different button or single axis of motion on the joystick. The
simple arm packages increases the rotational velocity of motors as the joystick
is pushed further or twisted more.

Fig. 18. The Logitech Extreme 3D Pro joystick button layout for the simple arm pack-
age (diagram is also available in Visio format27). Image credit: Logitech International

24Source code for simple arm ROS package https://github.com/danielsnider/

simple_arm
25Wiki page for simple arm ROS package http://wiki.ros.org/simple_arm
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Features of the simple arm package include: velocity control of individual
arm joint motors, fast and slow motor speed modifier buttons, buttons to open
and close a gripper, control of a camera servo (one axis only), simple Arduino
firmware to send PWM signals to control the velocity of motors and position of
the camera servo. For the sake of simplicity, this package does not implement
the following best practices: no tf publishing, no URDF, no joint limits and no
integration with ros control or MoveIt!. The simple arm package gives ROS users
the ability advance their robot more quickly and hopefully to find more time to
implement best practices.

9.1 Usage Instructions

1. Install the ROS package:

$ sudo apt -get install ros -kinetic -simple -arm

2. Launch the ROS node and specify as arguments the joystick device path for
controlling the arm and the Arduino to control the arm motors:

$ roslaunch simple_arm simple_arm.launch joystick_serial_dev

:=/ dev/input/js0 microcontroller_serial_dev :=/ dev/ttyACM0

In most cases however, the joystick is connected to another computer, such
as a teleoperation station. To do this, run the joy ROS node separately over the
ROS network.

3. Install the arm firmware onto a microcontroller as described in section 8.5.
The microcontroller must be connected to the arm’s motors and to the on board
computer running the simple arm ROS node by a serial connection (ex. USB).

4. Your robot arm is ready to be moved.

9.2 simple arm ROS Node

The simple arm node is written in python and simply converts ROS sen-
sor msgs/Joy messages from the common joy joystick ROS node into serial
messages. The serial messages are sent to the arm firmware on the microcon-
troller to drive the robot arm. The serial messages follow a simple protocol.
Each command is a list of 7 floats, one velocity command for each of the 6 joints
and one target angle to control the single axis camera.

The button mapping implemented by the simple arm node can be seen in Fig.
18 and was tested on a Logitech Extreme 3D Pro joystick. The button layout
should only need small modifications if any to work for similar controllers that
support a DirectInput mode.

27Logitech Extreme 3D Pro joystick button layout diagram in Visio format
https://github.com/danielsnider/ros-rover/blob/master/diagrams/simple_

arm_joystick_diagram.vsdx?raw=true
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9.3 arm firmware Arduino Software

The arm firmware microcontroller code does the minimum amount of work possi-
ble to receive motor commands from a USB serial connection and output voltages
to digital PWM to be received by motor controllers. It simply receives and fires
commands to the lower hardware level with no feedback. We use the Victor SP
motor controller to control our D.C. motors where the voltage is given by the
duty-cycle of the PWM signal.

We connected an Arduino by USB serial to our robot’s on-board computer
and dedicated its use to the simple arm package. We tested on an Arduino Mega
2560, however many other boards should work with the same code and setup
steps thanks to PlatformIO. You may need to change the pin numbers. For
details on how to install and use PlatformIO with the simple arm package see
the ROS wiki page or section 8.5 which contains very similar instructions.

Please note that this software does not stop moving the robot if no messages
are received for certain period of time.

10 Tutorial: Autonomous Recovery after Lost
Communications

At the URC competition, Team R3 (Ryerson University) was worried about
travelling into a communication deadzone and losing wireless control of our rover
from a distant base station. This is one of the challenges put forth by URC
competition and is often found in the real world.

We have published a new package, called lost comms recovery that will trig-
ger when the robot loses connection to the base station and it will navigate to
a configurable home or stop all motors.28,29 The base station connection check
uses ping to a configurable list of IPs. The monitoring loop waits 3 seconds be-
tween checks and by default failure is triggered after 2 consecutive failed pings.
Each ping will wait up to one second to receive a response.

While this node tries to add a safety backup system to your robot, it is far
from guaranteeing any added safety. What is safer than relying on this package,
is using motor control software that sets zero velocity after a certain amount of
time not receiving any new commands.

10.1 Usage Instructions

1. Install:

$ sudo apt -get install ros -kinetic -lost -comms -recovery

2. Launch:

28Source code for lost comms recovery ROS package https://github.com/

danielsnider/lost_comms_recovery
29Wiki page for lost comms recovery ROS package http://wiki.ros.org/lost_

comms_recovery
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$ roslaunch lost_comms_recovery lost_comms_recovery.launch

ips_to_monitor :=192.168.1.2

3. Then the following behavior will take place:

If move base is running, an autonomous recovery navigation will take place.
The default position of the recovery goal is the origin (0,0) of the frame given in
the goal frame id ROS parameter and the orientation is all 0s by default. This
default pose can be overridden if a messaged is published on the recovery pose
topic. If move base is already navigating to a goal it will not be interrupted and
recovery navigation will happen when move base is idle.

If move base is not running when communication failure occurs then motors
and joysticks are set to zero by publishing a zero geometry msgs/Twist message
and a zero sensor msgs/Joy message to simulate a joystick returning to a neutral,
non-active position.

10.2 Normal Output

When you launch and use the lost comms recovery ROS node you will see the
following console output.

$ roslaunch lost_comms_recovery lost_comms_recovery.launch

ips_to_monitor :=192.168.190.136

[INFO] Monitoring base station on IP(s): 192.168.190.136.

[INFO] Connected to base station.

[INFO] Connected to base station.

...

[ERROR] No connection to base station.

[INFO] Executing move_base goal to position (x,y) 0.0, 0.0.

[INFO] Initial goal status: PENDING

[INFO] This goal has been accepted by the simple action

server

[INFO] Final goal status: SUCCEEDED

[INFO] Goal reached.

Listing 8. Normal console output seen when launching the lost comms recovery ROS
node.

11 Tutorial: Stitch Panoramas with Hugin

Hugin is professional software popularly used to create panoramic images by
compositing and rectifying multiple still images.[11] We have created a package
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called hugin panorama to wrap one high level function of Hugin, the creation of
panoramas.30,31

In the science task of the URC competition, teams are awarded points if they
document locations of scientific interest such as geological and soil sampling sites
with panoramas.

Our package uses the Hugin command line tools to compose panoramas in 8
steps according to a well-documented workflow.32,33 To summarize, it consists
of creating a Hugin project file, finding matching feature control points between
images, pruning control points with large error distances, finding vertical lines
across images to be straightened, doing the straightening and other photometric
optimization, optimal cropping, and saving to tiff and compressed png image
formats. The compressed panoramic image is published on at output ROS topic.

An example panorama can be seen in Fig. 19. Despite the fact that the
panorama was created using low resolution raw images, the competition judges
still awarded the it full points.

The hugin panorama launch implementation34 makes use of the im-
age saver35 node provided by the image view package. The image saver node
will save all images from a sensor msgs/Image topic as jpg/png files. The saved
images are used as the source image parts when creating the panoramas.

11.1 Usage Instructions

1. Install the ROS package:

$ sudo apt -get install ros -kinetic -hugin -panorama hugin -tools

enblend

2. Launch the ROS node:

$ roslaunch hugin_panorama hugin_panorama.launch image :=/

image_topic

3. Save individual images for input to the panorama: (order doesn’t matter)

$ rosservice call /hugin_panorama/image_saver/save

# change angle of camera

$ rosservice call /hugin_panorama/image_saver/save

# repeat as many times as you like ...

30Source code for hugin panorama ROS package https://github.com/

danielsnider/hugin_panorama
31Wiki page for hugin panorama ROS package http://wiki.ros.org/hugin_

panorama
32The Hugin image processing library http://hugin.sourceforge.net/
33Panorama scripting with Hugin http://wiki.panotools.org/Panorama_

scripting_in_a_nutshell
34Main launch file of the hugin panorama package https://github.com/

danielsnider/hugin_panorama/blob/master/launch/hugin_panorama.launch
35Documentation for the image saver ROS node http://wiki.ros.org/image_

view#image_view.2BAC8-diamondback.image_saver
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Fig. 19. Panorama example made in Utah at the URC competition using the
hugin panorama ROS package. The graphic overlays were created with our ROS pack-
age that is presented in section 7.

4. Stitch the panorama:

$ rosservice call /hugin_panorama/stitch

5. View resulting panorama:

$ rqt_image_view /hugin_panorama/panorama/compressed

# or open the panorama file

$ roscd hugin_panorama; eog ./ images/output.png

6. Start again:

$ rosservice call /hugin_panorama/reset

This command will clear the images waiting to be stitched so you can start
collecting images for an entirely new panorama.

11.2 Live Panorama Mode

If you have more than one camera on your robot and you want to stitch images
together repetitively in a loop, then use stitch loop.launch. However, expect a
slow frame rate of less than 1 Hz because this package is not optimized for speed.
1. Launch the stitch loop node:

$ roslaunch hugin_panorama stitch_loop.launch image1 :=/

image_topic2 image2 :=/ image_topic2

2. View resulting live panorama:

$ rqt_image_view /hugin_panorama/panorama/compressed

If you have more than two cameras then the quick fix is to edit the sim-
ple python script (rosed hugin panorama stitch loop.py) and the launch file
(rosed hugin panorama stitch loop.launch) to duplicate some parts.
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12 Tutorial: GPS Navigation Goal

In the autonomous task of the URC competition, a series of goal locations are
given to teams as approximate GPS coordinates. Rovers are expected to au-
tonomously drive to the GPS location and then find and stop near a tennis ball
marker. To achieve the GPS navigation requirements of this task, Team R3 has
created the gps goal package.36,37 We believe this is the first packaged for ROS
solution to convert navigation goals in given in GPS coordinates to ROS frame
coordinates. The package uses one known GPS location in the ROS frame to fa-
cilitate converting between coordinate systems. Fig. 20 shows how this package
fits into Team R3’s larger ROS software architecture.

Fig. 20. The gps goal ROS node seen within Team R3’s rover system. See Fig. 9 for
the full diagram.

36Source code for gps goal ROS package https://github.com/danielsnider/gps_

goal
37Wiki page for gps goal ROS package http://wiki.ros.org/gps_goal
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The new gps goal package uses the WGS84 ellipsoid38 and geographiclib39

python library to calculate the surface distance between GPS points. WGS84 is
the standard coordinate system for GPS and thus the packages configures Geo-
graphicLib to use it because it is important for calculating the correct distance
between GPS points.

The GPS goal can be set using a geometry msgs/PoseStamped or sen-
sor msgs/NavSatFix message. The robot’s desired yaw, pitch, and roll can be
set in a PoseStamped message but when using a NavSatFix they will always be
set to 0 degrees.

The goal is calculated in a ROS coordinate frame by comparing the goal GPS
location to a known GPS location at the origin (0,0) of a ROS frame given by
the local xy frame ROS parameter which is typically set to ’world’ but can be
any ROS frame. This initial origin GPS location is best published using a helper
initialize origin node (see section 12.3 below for more details).

12.1 Usage Instructions

1. Install the ROS package:

$ sudo apt -get install ros -kinetic -gps -goal

2. Launch the ROS node:

$ roslaunch gps_goal gps_goal.launch

3. Set a known GPS location using one of the following approaches (a) or (b). The
given GPS location will be attached to the origin (0,0) of the ROS frame given
by the local xy frame ROS parameter. This is used to calculate the distance to
the goal.

3a. Use the next GPS coordinate published on a ROS topic (requires package
ros-kinetic-swri-transform-util):

$ roslaunch gps_goal initialize_origin.launch origin :=auto

3b. Or set the initial origin manually using a rostopic publish command:

$ rostopic pub /local_xy_origin geometry_msgs/PoseStamped ’{

header: { frame_id: "/map" }, pose: { position: { x:

43.658 , y: -79.379 } } }’ -1

4. Set a navigation goal using GPS coordinates set with either a Pose or NavSat-
Fix GPS message.

38The World Geodetic System (WGS) 84 is the reference coordinate system used
by the Global Positioning System (GPS). WGS84 uses degrees. It consists of a
latitudinal axis from -90 to 90 degrees and a longitudinal axis from -180 to 180
degrees. As it is the standard coordinate system for GPS it is also commonly
used in robotics. https://en.wikipedia.org/wiki/World_Geodetic_System#A_new_

World_Geodetic_System:_WGS_84
39The GeographicLib software library https://geographiclib.sourceforge.io/
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$ rostopic pub /gps_goal_fix sensor_msgs/NavSatFix "{ latitude

: 38.42 , longitude: -110.79}" -1

OR

$ rostopic pub /gps_goal_pose geometry_msgs/PoseStamped ’{

header: { frame_id: "/map" }, pose: { position: { x:

43.658 , y: -79.379 } } }’ -1

12.2 Command Line Interface (CLI)

Alternatively, a Command Line Interface (CLI) is available to set GPS navi-
gation goals. When using the CLI interface you can use one of two coordinate
formats: either degree, minute, and seconds (DMS) or decimal GPS format. Us-
ing command line arguments, users can also set the desired roll, pitch, and yaw
final position. You can invoke the gps goal script once using the Command Line
Interface (CLI) with any of the following options.

Listing 9. Example usages of the gps goal CLI script to set a navigation goal.

$ roscd gps_goal

$ ./src/gps_goal/gps_goal.py --lat 43.658 --long -79.379 #

decimal format

OR

$ ./src/gps_goal/gps_goal.py --lat 43,39,31 --long -79,22,45

# DMS format

12.3 initialize origin Helper ROS Node

The initialize origin node will continuously publish (actually in a latched man-
ner40) a geometry msgs/PoseStamped on the local xy origin topic and this is
the recommended approach over manually publishing the origin GPS location
with rostopic pub. This location is the origin (0,0) of the frame (typically world)
given by the local xy frame parameter to the initialize origin node. This location
is used to calculate distances for goals. One message on this topic is consumed
when the node starts only.

This node is provided by the swri transform util package (apt-get install ros-
kinetic-swri-transform-util) and it is often launched as a helper node for MapViz,
a top-down robot and world visualization tool that is detailed in section 15. There
are two modes for initialize origin: static or auto.

Static Mode You can hard code a GPS location (useful for testing) for the ori-
gin (0,0). In the following example the coordinates for the Mars Desert Research
Station (MDRS) are hard coded in initialize origin.launch and selected on the
command line with the option “origin:=MDRS”.

40When a connection is latched, the last message published is saved and automati-
cally sent to any future subscribers of that connection.
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$ roslaunch gps_goal initialize_origin.launch origin :=MDRS

Auto Mode When using the “auto” mode, the origin will be to the first GPS
fix that it receives on the topic configured in the initialize origin.launch file.

$ roslaunch gps_goal initialize_origin.launch origin :=auto

Launch example Starting the initialize origin ROS node can be done in the
following way.

Listing 10. An example launch config to start the initialize origin ROS node.

<node pkg=" swri_transform_util" type=" initialize_origin.py"

name=" initialize_origin" output =" screen">

<param name=" local_xy_frame" value ="/ world"/>

<param name=" local_xy_origin" value ="MDRS"/> <!-- setting "

auto" here will set the origin to the first GPS fix

that it receives -->

<remap from="gps" to="gps"/>

<rosparam param =" local_xy_origins">

[{ name: MDRS ,

latitude: 38.40630 ,

longitude: -110.79201 ,

altitude: 0.0,

heading: 0.0}]

</rosparam >

</node >

12.4 Normal Output

When you launch and use the gps goal ROS node or CLI interface you will see
the following console output.

$ roscd gps_goal

$ ./src/gps_goal/gps_goal.py --lat 43.658 --long -79.379

[INFO]: Connecting to move_base ...

[INFO]: Connected.

[INFO]: Waiting for a message to initialize the origin GPS

location ...

[INFO]: Received origin: lat 43.642 , long -79.380.

[INFO]: Given GPS goal: lat 43.658 , long -79.379.

[INFO]: The distance from the origin to the goal is 97.3 m.

[INFO]: The azimuth from the origin to the goal is 169.513

degrees.
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[INFO]: The translation from the origin to the goal is (x,y)

91.3, 13.6 m.

[INFO]: Executing move_base goal to position (x,y) 91.3,

13.6, with 138.14 degrees yaw.

[INFO]: To cancel the goal: ’rostopic pub -1 /move_base/

cancel actionlib_msgs/GoalID -- {}’

[INFO]: Inital goal status: PENDING

[INFO]: Final goal status: COMPLETE

Listing 11. Normal console output seen when launching the gps goal ROS node or
from the CLI interface.

13 Tutorial: Wireless Communication

At Team ITU (Istanbul Technical University), communication from our base
station to our mobile outdoor rover was of utmost importance and received a
good amount of development time. Non-line of sight (NLOS) communication is
an important issue and often a cause of unsuccessful runs in URC. Although
there are various commercial products available claiming to solve the issues of
long range and high throughput communication, many of them don’t solve the
problems as advertised. So a combination of systems and products were tested
and used in the competition.41,42

The primary system must be capable of delivering a video feed to the ground
station for operators to use while piloting the vehicle remotely. This system is
generally preferred to be a Wi-Fi network that can multiplex high-res video
and data traffic at high speeds. After performing a series of unsuccessful non-
line of sight (NLOS) tests at long distances (400-500 meters) with the Ubiquiti
Bullet M2, a popular 2.4 GHz product, a less popular Microhard pDDL2450
module was chosen based on our sponsor’s advice. Thankfully, the sponsor had
a few spares and donated them to Team ITU. In tests, this 2.4 GHz module was
generally successful in sending useful data from the vehicle’s instruments and
720p video feed compressed with MJPEG from five cameras at the same time
over a 1 km range in NLOS course with 8dBi omnidirectional antennas. This
module is physically connected to the high level on-board computer (OBC), a
Raspberry Pi 3 with running Ubuntu 16.04, with a standard CAT5 Ethernet
cable.

Secondly, our radio frequency (RF) backup link was able to pass over the
natural obstacles such as large rocks and hills. This link operates on lower UHF
frequencies and lower baud rates to increase performance needed to send cru-
cial information about the vehicle’s condition to ensure health and function of

41Team ITU’s low level communication source code https://github.com/

itu-rover/2016-2017-Sensor-GPS-STM-Codes-/blob/master/STM32/project/mpu_

test/Src/main.c
42Team ITU’s high level communication source code https://github.com/

itu-rover/communication
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the rover at extreme distances (5km). We consider our rover’s heartbeat, GPS
position, attitude and current speed to be important data that should be sent
through the RF link. Tests were conducted using 433Mhz LoRa modules (see
Fig. 21) on both sides with 3dBi omnidirectional antennas, in 9600 and 115200
baud rates. The tests showed that these modules have no problem sending the
data over a 5 km range in NLOS conditions. The LoRa modules were wired to
the standard RX-TX wires on our STM32F103 microprocessor and uses UART
communication. The microprocessor also controls the driving system, communi-
cates with the sensors, the Raspberry Pi 3 on-board computer (OBC).

Fig. 21. UHF LoRa radio module for long range communication. Image credit: Semtech
Corporation

To make the LoRa RF link active in the C# language see Listing 12.

Listing 12. Start communication with the LoRa RF module in the C# language.

SerialPort _serialPort = new SerialPort ("COM1", 115200 ,

Parity.None , 8, StopBits.One);

_serialPort.Open();

In normal, connected conditions, only the Wi-Fi network system is active and
the RF system is inactive. In these conditions all the processing is done in the
Raspberry Pi 3 on-board computer (OBC). Commands from the human pilot
reach the OBC first and then are distributed to the low level STM microprocessor
via a RS232 link. The video feed is active and the pilot can easily drive the
rover using the video images from the cameras. The low band RF system was
remarkably reliable although interruptions were encountered at times with the
Wi-Fi network.
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Fig. 22. Flowchart of decision making algorithm used on ITU’s rover.

In the case of losing the Wi-Fi network system or OBC, the video feed will
be lost and piloting the vehicle without a video feed is almost impossible. So
an innovative solution was implemented to overcome this problem and continue
the mission. In such conditions, first the RF link is activated and crucial infor-
mation and the pilot commands are redirected to this link. Therefore, the pilot
directly communicates with the low level processor. To help the pilot visualize
the environment a virtual environment around the GPS coordinates is simulated
with computer graphics. This visual environment is created using the TerraUnity
software. The software creates a one-to-one, colorized, topographical landscape
with natural objects loaded from a 3D map database of the location.43 This way
the driver could look at the ground station monitor and see the terrain around
the vehicle in the Unity graphics simulation, which was pretty precise in our
tests. The software was found to be very successful in creating a realistic envi-
ronment and it gives a clue to the driver about where the vehicle is and what
natural obstacles are around it. Knowing the locations of natural obstacles is
essential as the rover has physical limits that prevent it from navigating some
terrain. Although the TerraUnity solution is an imperfect representation of the
world, it provides a useful avenue to continue the mission in a catastrophic failure
scenario.

Finally, in the case where both Wi-Fi and RF communication is lost to
the rover, a third backup system is initialized where the rover navigates au-
tonomously to the last GPS point that it communicated successfully with the
ground station.

43TerraUnity computer graphics software used to the visualize the rover at its GPS
location in a topographical simulation of earth http://terraunity.com/
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14 Tutorial: Autonomous Navigation by Team R3

In this section we present Team R3’s (Ryerson University) autonomous software
architecture that was designed for outdoor autonomous driving at the University
Rover Competition (URC) 2017. The design uses a stereo camera and SLAM to
navigate to a goal autonomously and avoid static obstacles. For a description
of the requirements of the autonomous task for URC 2017, please refer back to
Section 2.2 of this chapter.

In the following subsections we will elaborate on the ZED stereo camera,
rbgd odometry, RTAB-Map SLAM, and move base. Fig. 23 depicts a diagram
of Team R3’s autonomous software design. To see this diagram within a larger
diagram with more of Team R3’s rover software components see Section 5.

14.1 ZED Depth Camera

The ZED stereo camera46,47,48 and ROS wrapper software perform excellently
for the price of $450. With the ZED camera Team R3 was able to avoid obstacles
such as rocks and steep cliffs. However, the rover could not move quickly, no faster
than slow-moderate human walking speed, because the performance of our on
board computer, a Nvidia Jetson TX149, was fully utilized. It is important to
know that a restriction of the ZED camera is that it requires an Nvidia GPU, a
dual-core processor, and 4GB of RAM. All of which the Nvidia Jetson TX1 has.

The ZED camera combined with RTAB-Map for SLAM localization and map-
ping worked reasonably robustly even in Utah’s desert where the ground’s feature
complexity is low and even with a significant amount of shaking on the pole to
which our ZED camera was attached.

Here is a tip when using the ZED camera: launch the node with command
line arguments so you can more easily find the right balance between perfor-
mance and resolution. At URC we wanted the lowest latency so we default to
VGA resolution, at 10 FPS, and low depth map quality. Also, note that the ZED
camera is designed for outdoor textured surfaces. Indoor floors that are feature-
less will make testing more difficult. Also when testing indoors, you may use a
blinder on top of the camera so that it doesn’t see the ceiling as an obstacle.

$ roslaunch rover zed_up frame_rate :=30 resolution :=2

depth_quality :=3

45Team R3’s autonomous software architecture diagram in Microsoft Vi-
sio format https://github.com/danielsnider/ros-rover/blob/master/diagrams/

team_r3_AUTO_Diagram.vsdx?raw=true
46ZED stereo camera technical specs https://www.stereolabs.com/zed/
47More ZED camera documentation https://www.stereolabs.com/

documentation/guides/using-zed-with-ros/ZED_node.html
48Team R3’s ZED launch file https://github.com/teamr3/URC/blob/master/

rosws/src/rover/launch/zed_up.launch
49Nvidia Jetson TX1 technical specs https://developer.nvidia.com/embedded/

buy/jetson-tx1-devkit



44 D. Snider et al.

F
ig
.
2
3
.

T
ea

m
R

3
’s

a
u
to

n
o
m

o
u
s

n
av

ig
a
tio

n
sy

stem
u
sed

a
t

U
R

C
2
0
1
7

rov
er

co
m

p
etitio

n
.
T

h
is

d
ia

g
ra

m
is

a
lso

ava
ila

b
le

in
V

isio
fo

rm
a
t
4
5.



University Rover Challenge: Tutorials and Team Survey 45

Fig. 24. The ZED depth camera. Image credit: Stereolabs

1 <launch >

2 <arg name="frame_rate" default="10"/>

3 <arg name="resolution" default="3"/>

4 <arg name="depth_quality" default="1"/>

5 <node output="screen" pkg="zed_wrapper" name="zed_node"

type="zed_wrapper_node">

6 <param name="frame_rate" value="$(arg frame_rate)"/>

7 <!-- Image resolution options: -->

8 <!-- 0 ’: HD2K , 1 ’: HD1080 , 2 ’: HD720 , 3 ’:

VGA -->

9 <param name="resolution" value="$(arg resolution)"/>

10 <!-- Depth map quality options: -->

11 <!-- 0 ’: NONE , 1 ’: PERFORMANCE , 2 ’: MEDIUM ,

3 ’: QUALITY -->

12 <param name="quality" value="$(arg depth_quality)"/>

13 </node>

14 <node pkg="image_transport" type="republish" name="

zed_camera_feed" args="raw in:=rgb/image_rect_color

out:= rgb_republished"/>

15 </launch >

Listing 13. Arguments in a ROS launch file so to allow easy changing of the quality
of the ZED stereo camera.

Reduce Bandwidth Used by Video Streams To lower the amount of data
on our wireless link, on line 14 we publish the ZED camera as JPEG com-
pressed stills and Theora video streaming using the republish node of the im-
age transport ROS package.50 Republish listens on one uncompressed (raw) im-
age topic and republishes JPEG compressed stills and Theora video on different
topics.

50republish ROS node documentation http://wiki.ros.org/image_transport#

republish
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To lower bandwidth even further you can convert images to greyscale, cutting
data usage by 3. Team R3 has a small ROS node for this.51

Additionally, you should use the republish node when more than one ROS
node is subscribing to a depth or image stream over a wireless connection. Instead
you should have one republish node subscribe at the base station, then multiple
ROS nodes at the base station can subscribe to the republish node without
consuming a lot of wireless bandwidth. This is also referred to as a ROS relay.

Another easy way to reduce bandwidth used by the ZED camera is to down-
sample its pointcloud using the VoxelGrid nodelet in the pcl ros ROS package.52

14.2 Visual Odometry with rgbd odometry

The ZED camera does not have a gyroscope or accelerometer in it. It uses
visual information for odometry and it is quite good. We found that the
rgbd odometry53,54 node provided by the RTAB-Map package produces bet-
ter visual odometry than the standard ZED camera odometry algorithm. Visual
odometry was very robust to jitter and shaking as the rover moved over rough
terrain, even with our camera on a tall pole which made the shaking extreme.
Optimizations to rgbd odometry used by Team R3 at the URC 2017 rover com-
petition are shown in Listing 14

1 <launch >

2 <node output="screen" type="rgbd_odometry" name="zed_odom

" pkg="rtabmap_ros">

3 <!-- 2D SLAM makes the position drift less over time

-->

4 <param name="Reg/Force3DoF" type="string" value="true

"/>

5 <!-- Change if camera is tilted downwards or any non -

level pose -->

6 <param name="initial_pose" value="0 0 0 0 0 0"/>

7

8 <!-- Options to Reduce Resource Usage -->

9 <!-- 0=Frame -to-Map (F2M) 1=Frame -to-Frame (F2F) -->

10 <param name="Odom/Strategy" value="1"/>

11 <!-- Correspondences: 0= Features Matching , 1= Optical

Flow -->

12 <param name="Vis/CorType" value="1"/>

13 <!-- maximum features map size , default 2000 -->

14 <param name="OdomF2M/MaxSize" type="string" value="

1000"/>

51Python ROS script to reduce bandwidth usage of video streams https://github.
com/teamr3/URC/blob/master/rosws/src/rover/src/low_res_stream.py

52pcl ros ROS documentation http://wiki.ros.org/pcl_ros
53rgbd odometry ROS node documentation http://wiki.ros.org/rtabmap_ros#

rgbd_odometry
54Team R3’s rgbd odometry launch file https://github.com/teamr3/URC/blob/

master/rosws/src/rover_navigation/launch/rgbd_odometry.launch
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15 <!-- maximum features extracted by image , default

1000 -->

16 <param name="Vis/MaxFeatures" type="string" value="

600"/>

17 </node>

18 </launch >

Listing 14. Important settings to optimize the rgbd odometry ROS node.

14.3 3D Mapping in ROS with RTAB-Map

Using depth camera data, RTAB-Map55,56 creates a continuously growing point
cloud of the world using simultaneous localization and mapping (SLAM).[5] In-
herent to the SLAM algorithm is pinpointing your own location in the map that
you are building as you move. Using this map, RTAB-Map then creates an oc-
cupancy grid map[3], which represents free and occupied space, needed to avoid
obstacles in the rover’s way. RTAB-Map’s algorithm has real-time constraints
so that when mapping large-scale environments time limits are respected and
performance does not degrade.[7]

Fig. 25. Screenshot of R3’s autonomous system tests with RTAB-Map (video available
on YouTube58)

55RTAB-Map documentation http://wiki.ros.org/rtabmap_ros
56Team R3’s launch file for RTAB-Map https://github.com/teamr3/URC/blob/

master/rosws/src/rover_navigation/launch/rtabmap.launch
58Video of an autonomous navigation by Team R3 with RTAB-Map and the ZED

stereo camera https://www.youtube.com/watch?v=p_1nkSQS8HE



48 D. Snider et al.

In the launch file seen in Listing 15, lines 3-5 show configurations to reduce
noisy detection of obstacles. If you set MaxGroundAngle to 180 degrees, this
effectively disables obstacle detection, which can be both useful and dangerous.

RTAB-Map also performs loop closures. Loop closure is the problem of recog-
nizing a previously-visited location and updates the beliefs accordingly.59 When
an image is matched to a previously-visited location, a loop closure is said to
have occurred. At this point RTAP-Map will adjust the map to compensate for
drift that occurred since the last time the location was visited. Lines 8-10 of
listing 15 increase the likelihood of loop closures being detected.

1 <launch >

2 <node pkg="rtabmap_ros" name="rtabmap" type="rtabmap"

output="screen">

3 <!-- Improve obstacle detection -->

4 <param name="Grid/MaxGroundAngle" value="110"/> <!--

Maximum angle between point ’s normal to ground ’s

normal to label it as ground. Points with higher

angle difference are considered as obstacles.

Default: 45 -->

5 <param name="grid_eroded" value="true"/> <!-- remove

obstacles which touch 3 or more empty cells -->

6

7 <!-- Improve loop closure chances -->

8 <param name="RGBD/LoopClosureReextractFeatures" type=

"string" value="true"/> <!-- Extract features

even if there are some already in the nodes , more

loop closures will be accepted. Default: false

-->

9 <param name="Vis/MinInliers" type="string" value="10"

/> <!-- Minimum feature correspondences to

compute/accept the transformation. Default: 20 --

>

10 <param name="Vis/InlierDistance" type="string" value=

"0.15"/> <!-- Maximum distance for feature

correspondences. Used by 3D->3D estimation

approach (the default approach). Default: 0.1 -->

11 </node>

12 </launch >

Listing 15. Important settings for tuning the RTAB-Map 3D mapping ROS package.

Team R3’s main strategy for the autonomous task of URC 2017 was to:

1. Build a SLAM map by teleoperating from the start gate all the way to the
tennis ball objective (actually this could be an autonomous navigation attempt
by using the GPS location of the tennis ball as the goal), 2. then we would put

59More information about loop closures https://en.wikipedia.org/wiki/

Simultaneous_localization_and_mapping#Loop_closure
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a flag60 in RViz to mark where we observed the tennis ball, 3. then we would
teleoperate back to the start gate, 4. complete a loop closure to correct for drift,
5. and then use RViz to set an autonomous goal for where we saw the tennis
ball.

14.4 move base Path Planning

The ROS navigation stack61, also known as move base62, is a collection of com-
ponents/plugins that are selected and configured by YAML configuration files
as seen in Listing 16. For global path planning, the NavFn plugin is used which
implements Dijkstra’s shortest path algorithm.

1 <launch >

2 <node pkg="move_base" type="move_base" name="move_base"

output="screen" clear_params="true">

3 <rosparam file="$(find rover)/costmap_common_params.

yaml" command="load" ns="global_costmap"/>

4 <rosparam file="$(find rover)/costmap_common_params.

yaml" command="load" ns="local_costmap"/>

5 <rosparam file="$(find rover)/local_costmap_params.

yaml" command="load"/>

6 <rosparam file="$(find rover)/global_costmap_params.

yaml" command="load"/>

7 <rosparam file="$(find rover)/

base_local_planner_params.yaml" command="load"/>

8 </node>

9 </launch >

Listing 16. move base is configured by independent YAML files that configure the
subcomponents of move base.

The most interesting configuration file for move base is the
base local planner params.yaml.63 Given a path for the robot to follow
and a costmap, the base local planner64 produces velocity commands to send
to a mobile base. This configuration is where you set minimum and maximum
velocities and accelerations for your robot, as well as goal tolerance. Make sure
that the minimum velocity multiplied by the sim period is less than twice the
tolerance on a goal. Otherwise, the robot will prefer to rotate in place just
outside of range of its target position rather than moving towards the goal.

60RViz flag tool http://docs.ros.org/jade/api/rviz_plugin_tutorials/html/

tool_plugin_tutorial.html
61ROS Navigation Stack http://wiki.ros.org/navigation
62Team R3’s move base configuration file https://github.com/teamr3/URC/blob/

master/rosws/src/rover_navigation/launch/move_base.launch
63Team R3’s config file for base local planner params.yaml configuration of

move base https://github.com/teamr3/URC/blob/master/rosws/src/rover_

navigation/config/base_local_planner_params.yaml
64Documentation for base local planner http://wiki.ros.org/base_local_

planner
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1 TrajectoryPlannerROS:

2 acc_lim_x: 0.5

3 acc_lim_y: 0.5

4 acc_lim_theta: 1.00

5

6 max_vel_x: 0.27

7 min_vel_x: 0.20

8 max_rotational_vel: 0.4

9 min_in_place_vel_theta: 0.27

10 max_vel_theta: 0.1

11 min_vel_theta: -0.1

12 escape_vel: -0.19

13

14 xy_goal_tolerance: 1

15 yaw_goal_tolerance: 1.39626 # 80 degrees

16

17 holonomic_robot: false

18 sim_time: 1.7 # set between 1 and 2. The higher he value ,

the smoother the path (though more samples would be

required)

Listing 17. Important velocity settings in the base local planner params.yaml
configuration file of move base.

15 Tutorial: MapViz Robot Visualization Tool

Fig. 26. Screenshots of MapViz ROS visualization tool. Red dots indicate gps coordi-
nates. Many more visualization layers are possible.
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At the URC competition, Team R3 (Ryerson University) improved their sit-
uational awareness by using MapViz.65 Mapviz is a ROS-based visualization tool
with a plug-in system similar to rviz but focused only on a top down, 2D view
of data. Any 3D data is flattened into the 2D view of MapViz. Created by the
Southwest Research Institute in Florida for their outdoor autonomous robotics
research, it is still under active open source development at the time of writing
in December 2017. Using a plugin called tile-map, Google Maps satellite view
can be viewed in the MapViz plugin called Tile Map.

The authors have contributed a Docker container66 to make displaying
Google Maps in MapViz as easy as possible. This container runs software called
MapProxy which converts from the format of Google Maps API to a standard
format called Web Map Tile Service (WMTS) which MapViz Tile Map plugin
can display. The authors have set MapProxy’s configuration67 to cache any maps
that you load to ∼/mapproxy/cache data/ so that they are available offline.

15.1 Usage Instructions

The goal of this tutorial is to install and configure MapViz to display Google
Maps.
1. Install mapviz, the plugin extension software, and the plugin for supporting
tile maps which is needed to display Google Maps:

$ sudo apt -get install ros -kinetic -mapviz ros -kinetic -mapviz -

plugins ros -kinetic -tile -map

2. Launch the MapViz GUI application:

$ roslaunch mapviz mapviz.launch

3. Use Docker to set up a proxy of the Google Maps API so that it can be cached
and received by MapViz in WMTS format. To make this as simple as possible,
run the Docker container created by the authors:

$ sudo docker run -p 8080:8080 -d -t -v ~/ mapproxy :/ mapproxy

danielsnider/mapproxy

The -v ∼/mapproxy:/mapproxy option is a shared volume, a folder that is
synced between the Docker container and the host computer. The ∼/mapproxy
folder needs to be created, though it could be in another location. The -t option
allocates a pseudo-tty which gives the program a terminal environment to run
in. It is needed for most programs. The -p option sets the Docker port mapping
between host and container.

65Documentation and source code for MapViz https://github.com/

swri-robotics/mapviz
66Docker container for proxying Google Maps to MapVizhttps://github.com/

danielsnider/MapViz-Tile-Map-Google-Maps-Satellite
67MapProxy config file https://github.com/danielsnider/

docker-mapproxy-googlemaps/blob/master/mapproxy.yaml
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Fig. 27. MapViz ROS node seen within Team R3’s rover system. See fig. 9 for the full
diagram.
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4. Confirm MapProxy is working by browsing to http://127.0.0.1:8080/

demo/. The MapProxy logo will be displayed and you can click on “Image-format
png” to get an interactive map. Also, test that the first map tile is working by
browsing to http://localhost:8080/wmts/gm_layer/gm_grid/0/0/0.png.
5. In the MapViz GUI, click the “Add” button and add a new map tile display
component.
6. In the “Source” dropdown select “Custom WMTS Source...”.
7. In the “Base URL:” field enter the following: http://localhost:8080/wmts/
gm_layer/gm_grid/{level}/{x}/{y}.png

8. In the “Max Zoom:” field enter 19 and Click “Save...”. This will permit MapViz
to zoom in on the map 19 times.

Google Maps will now display in MapViz. To set a default location in the
world to display at program start up time, you can edit ∼/.mapviz config.

$ vim ~/. mapviz_config

# edit the following lines

offset_x: 1181506

offset_y: -992564.2

Listing 18. MapViz setting for default viewing location (within a ROS frame) when
GUI opens.

16 Tutorial: Effective Robot Administration

In this tutorial, Team R3 (Ryerson University) shares two favorite preferences
for making command line administration of ROS robots easier both for the URC
competition and any other use.

16.1 tmux Terminal Multiplexer

Tmux is a popular linux command line program that can take over one terminal
window and organize many terminals into grouped layouts and will continue
running when you close the parent window or lose an SSH connection.68 Multiple
people can join a tmux session to share an identical terminal view of a Linux
system. Many technology professionals (especially linux and IT professionals)
see tmux as essential to their workflow.69

Tmux works harmoniously with ROS’s modular design. Separate tmux win-
dows can display different ROS components. Almost any ROS component can
be launched, controlled, and debugged using ROS’s command line tools. Using
tmuxinator, you can codify the launching and debugging commands that you
most often use into a repeatable layout.70

68Homepage for Tmux the terminal multiplexer https://github.com/tmux/tmux/

wiki
69A crash course to learn tmux https://robots.thoughtbot.com/

a-tmux-crash-course
70Tmuxinator is an tool for tmux that lets to write tmux layout configuration files

for repeatable layouts https://github.com/tmuxinator/tmuxinator
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At URC 2017, Team R3 used tmuxinator to launch all our robot’s software
systems. There was a section that contained the terminals running the drive
software, another section with terminals running the arm software, another for
the IMU, for the GPS, for the cameras, etc. All of it in an organized way. Just
about every software can be started on the command line using tmuxinator after
the rover’s computer boots.

The tmuxinator configuration used by Team R3 was split into two sides: the
robot config71, and the base station config72. The robot configuration launches
all of the rover’s software. The base station configuration launches all of the
software needed to visualize and control the robot remotely by the teleoperator.

Fig. 28. An annotated example of tmuxinator’s usefulness for ROS.

Using Tmuxinator can be thought of as is a quick way to create a very simple
user interface to help administer a robot (but it is not a replacement for Rviz
and other existing tools). Building a robot GUI as a web interface or desktop
application can be useful for some applications, and for novices who are unwilling
to learn common command line tools, but such a GUI will require a lot more
“plumbing” and “glue code” to create.

71The tmuxinator config used by Team R3 to start all the rover software components
https://github.com/teamr3/URC/blob/master/.tmuxinator.yml

72The tmuxinator config used by Team R3 to start all the base station
software components https://github.com/teamr3/URC/blob/master/devstuff/dan/

.tmuxinator.yml
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An implementation imperfection is that tmuxinator starts all of its panes
(i.e. terminals) at the same time: running multiple roslaunch instances may try
and fail to create multiple masters. The solution we implemented was to run a
roscore separately, which has the added benefit of being able to stop and start
roslaunches without worrying about which one is running the master. This still
has the problem of roslaunches starting before the roscore though, so to solve
this naively we have used a small wait time, for example “sleep 3; roslaunch...”
in our tmuxinator config.

16.2 ROS Master Helper Script

Team R3 has developed a script to make it a little easier to connect your com-
puter to a remote master that is not on your machine.73 The script when run
will automatically set bash environment variables needed for ROS networking
to work in a convenient way. The script will detect if your robot is online using
ping (using a static IP for your robot) and set your ROS MASTER URI envi-
ronment variable to point to your robot. If your robot is not online your own
computer’s IP will be used for your ROS MASTER URI, assuming you will do
local or simulation development since you are away from your robot. To use this
script run source set robot as ROS master.sh or add it to your ∼/.bashrc.
Also, the script sets your own machine’s ROS IP environment variable because
it is needed in any case for ROS networking.

17 Conclusion

This chapter presented an overview of rover systems through the lenses of the
University Rover Competition. Design summaries of 8 URC teams were surveyed
and implementation details from 3 URC teams were discussed in a series of tu-
torials. Several new ROS packages were documented with examples, installation
and usage instructions, along with implementation details.

To summarize the main findings in this chapter: Rovers can be built by inte-
grating existing software thanks to the ROS ecosystem. The URC competition
is very challenging and students learned a lot by participating. A variety of cre-
ative rover designs exist and the best rover teams were the most prepared and
practiced.

We hope this chapter spurs greater collaboration between teams. Ideally,
the teams of URC will look past the competitive nature of the event and view
collaborating and building better robots as the more important goal. Building
on a common core frees up time to focus on the hardest parts. Here are a few
ways to further collaboration: 1) Contribute to a ROS package or the ROS core.
2) Open an issue, feature request, or pull request. 3) Discuss URC on the URC
Hub forum. 4) Discuss ROS on their forum. 5) Contribute to a book like this.

73Team R3’s ROS master helper script https://gist.github.com/danielsnider/

13aa8c21e4fb12621b7d8ba59a762e75
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