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ABSTRACT
Reinforcement learning (RL) workloads take a notoriously long
time to train due to the large number of samples collected at run-
time from simulators. Unfortunately, cluster scale-up approaches
remain expensive, and commonly used CPU implementations of
simulators induce high overhead when switching back and forth
between GPU computations. We explore two optimizations that
increase RL data collection efficiency by increasing GPU utilization:
(1) GPU vectorization: parallelizing simulation on the GPU for in-
creased hardware parallelism, and (2) simulator kernel fusion: fusing
multiple simulation steps to run in a single GPU kernel launch to
reduce global memory bandwidth requirements. We find that GPU
vectorization can achieve up to 1024× speedup over commonly
used CPU simulators. We profile the performance of different im-
plementations and show that for a simple simulator, ML compiler
implementations (XLA) of GPU vectorization outperform a DNN
framework (PyTorch) by 13.4× by reducing CPU overhead from
repeated Python to DL backend API calls. We show that simulator
kernel fusion speedups with a simple simulator are 11.3× and in-
crease by up to 1024× as simulator complexity increases in terms
of memory bandwidth requirements. We show that the speedups
from simulator kernel fusion are orthogonal and combinable with
GPU vectorization, leading to a multiplicative speedup.
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• Computing methodologies→ Reinforcement learning.
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1 INTRODUCTION
Reinforcement learning (RL) workloads take a notoriously long time
to train due to the large number of samples collected at runtime
from simulators. Recent works address this problem by runningmul-
tiple simulators in parallel across a cluster of accelerator-equipped
machines. For example, AlphaZero [25] used 5000 TPUs to perform
self-play in parallel reducing training time to 13 days. However,
at an hourly cloud pricing of $6.50/hour for an on-demand v1
TPU [1] used at the time, that brings the cost of each trained model
to $10, 140, 000. Hence, scaling up RL training is economically im-
practical outside of large-scale industrial research projects.

A recent survey of RL training workloads [10] demonstrated that
the lowGPU utilization of RLworkloads is caused by data collection,
which manifests in two ways. First, CPU simulation time takes up
a large amount of training time, with at least 38.1% of training time
spent in simulation across popular robotics simulators. Second, a
large amount of CPU time originates from overheads induced by
switching between CPU-based simulation and GPU-based inference.
CUDA API calls alone account for 3.6× as much time on average
as the GPU kernel execution in both PyTorch [21] and TensorFlow
[2] implementations of an RL algorithm. Hence, to optimize data
collection in RL frameworks, GPU utilization must be increased.

In this paper, we explore two potential optimizations for increas-
ing GPU utilization during the time-consuming data collection
phase of RL training workloads: (1) GPU vectorization, and (2) simu-
lator kernel fusion. This work is preliminary, as it focuses on a simple
simulator that eased implementation efforts across different ML
frameworks thereby enabling a more in-depth analysis. Additional
simulators will be explored in future work (Section 7).

GPU vectorization exploits the massive hardware parallelism of
GPUs to run 𝑁 simulator instances in parallel. This leads to per-
formance benefits from a greater amount of simulators that can
run in parallel and from reduced CPU overheads (e.g., data copy-
ing, API calls) when switching to and from the GPU. Using both
DL framework (PyTorch) and ML compiler (XLA [11]) approaches,
we are able to achieve up to 1024× speedup in data collection.
Prior work [9] also observed that a GPU implementation can have
large speedups, but limited their comparisons to only a single ML
framework, and only compared against an inefficient single-core
CPU implementation. In contrast, we compare and contrast the
full gamut of commonly used and high-performance implemen-
tations of vectorization. We show that using multiple cores with
C++ only accounts for a 4× speedup over the single-core OpenAI
implementation. We compare different GPU implementations and
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show that XLA can achieve 13.4× speedup over PyTorch. Profiling
reveals that XLA amortizes CPU overheads by launching all data
collection GPU kernels in a constant number of Python→XLA API
calls regardless of the number of steps, whereas PyTorch requires a
greater number of Python→PyTorch API calls as data collection
steps increase.

Kernel fusion is a GPU optimization that benefits from (1) re-
duced kernel launch overhead from fewer kernel launches, and
(2) increased cache efficiency by avoiding device memory trans-
fers. Many common robotic physics simulators can be modeled as
rigid body simulations that are parallelized over the joint states of
the simulation [9]. Since these simulation GPU kernels are short,
this makes them an attractive target for kernel fusion. To demon-
strate this, we fused multiple simulation steps in the simple cartpole
[20] simulator and achieved 11.3× speedup. For increasingly com-
plex simulators, we show that speedups of kernel fusion are larger
for more memory bandwidth bound simulators since fusion re-
duces global memory transfers. In particular, kernel fusion can
have 8 − 1024× speedup depending on how memory bandwidth
bound the simulator is. The speedup from kernel fusion is indepen-
dent of the number of parallel simulators used, so kernel fusion can
be combined with GPU vectorization to achieve massive simulation
speedups.

In summary, our contributions are:
• We thoroughly compare the performance limitations of GPU vec-
torization implementations. Both ML compiler and deep neural
network (DNN) frameworks are up to 1024× faster as parallel
environments saturate. However, ML compiler approaches out-
perform DNN framework approaches by 13.4× for smaller paral-
lel environments configurations by amortizing CPU overheads.

• We show that simulator kernel fusion achieves 11.3× speedup
for a real simulator and that the maximum speedup increases up
to 1024× for memory bandwidth bound simulators of increasing
complexity.

• We demonstrate that simulator kernel fusion speedups and GPU
vectorization speedups are independent, and both can be com-
bined for massive multiplicative benefits.

2 BACKGROUND
We provide a high-level overview of the RL training procedure with
a focus on data collection, and ML frameworks used to implement it.
We describe a simple simulator that we use to explore GPU vector-
ization and simulator kernel fusion optimizations and demonstrate
that it is representative of robotics physics simulators commonly
used in RL.

2.1 RL Training
The RL training procedure uses backpropagation (shown in Fig-
ure 1a), and collects the training dataset at run-time by interacting
with a simulator. The data collection process (Figure 1b) consists of
a simulation/inference loop, whereby the state of the simulator is
fed into the model learned so far to determine which action to take.
The selected action determines the next state of the simulator and
the resulting reward, and the reward is used to form labels for the
collected data.

The data collection loop runs for a pre-determined number of
steps K (i.e., a hyperparameter). Different ML frameworks imple-
ment the data collection loop differently, which we will show has
performance implications. DNN frameworks (PyTorch) execute 𝐾
separate DL backend API calls for each step, whereas ML compilers
(XLA) can condense the entire loop into a single DL backend API
call. Once enough data is collected from the simulator, the model is
updated using the backpropagation algorithm, which completes a
training epoch for the RL algorithm.

To accelerate data collection, RL training frameworks will run
multiple simulator instances N. Simulators are typically CPU-based
(e.g., Mujoco [26], PyBullet [7], OpenAI gym [4]). Some RL training
frameworks use multiple CPU cores to parallelize simulators [14],
whereas others opt for flexibility and use only a single CPU core1;
in our evaluation we consider both. Multiple simulator states are
combined into a single minibatch that is fed to inference running
on the GPU. Training continues until a pre-determined number of
training epochs has completed, after which the average reward per
episode will converge to a maximum value.

2.2 Cartpole Simulator
The cartpole [20] simulation models a cart moving left and right
along a 2D plane to balance a pole, as illustrated in Figure 1b. The
simulation state size is small consisting of 𝑆 = 4 floating point
numbers: the cart’s velocity (®𝑣), position (𝑥), the pole’s joint an-
gle relative to the cart (𝜃 ), and pole’s angular velocity (𝜔). The
simulation dynamics equations consist of simple row-wise trans-
formations that produce a new set of 4 floats.

In this study, we focus on the cartpole simulator since it is
simple to implement in DNN frameworks and directly in CUDA
[17], and its performance is very similar to other common robotics
physics simulators. To test this, we directly compared the simula-
tion throughput of XLA GPU implementations of cartpole against
commonly used robotics physics simulators. From Figure 2, we
observe that the simulation throughput of cartpole is similar to
common robotics simulators used in RL. The main difference is that
simulation throughput for cartpole scale up to 219 environments,
whereas Brax [9] environments only scale up to 212 environments,
which is attributable to the additional compute complexity of Brax
simulations which also include collision detection. To understand
the effect of simulator complexity on GPU vectorization and kernel
fusion speedups, we also vary the compute and memory bandwidth
requirements of the cartpole simulation in Section 4.2.

2.3 ML Frameworks
RL developers have a variety of ML frameworks to choose from
when implementing RL training algorithms. While most RL devel-
opers choose ML frameworks solely based on convenience, in this
paper we instead delineate ML frameworks by subtle design choices
that affect their performance. As we will see, these performance dif-
ferences become more pronounced when we investigate optimizing
data collection.

1Python RL frameworks [12] opt to use only a single CPU core due to inefficiencies in
Python’s shared memory multi-threading implementation [23]
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Data 
collection

States, 
rewards

FC FC FC

Forward pass

Backward pass

(a) RL training: RL training uses the
backpropagation algorithm similar to
supervised learning, except that the
training data must be collected at run-
time.

Inference states

State size: 𝑆𝑆 = 4

Number of 
Simulators: 

𝑵𝑵
FC FC FC

actions

states[i] = [𝑥𝑥,𝑣⃑𝑣,𝜃𝜃,𝜔𝜔]
actions[i] = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Simulation
Data 

collection

states = [env.reset() for env in simulators]
for step in range(K):
actions = model(states)
for i in range(N):

states[i], rewards[i] = env.step(actions[i])
dataset.store(actions, states, rewards)

MLP model

𝜃𝜃:

𝑥𝑥: cart position
𝑣⃑𝑣: cart velocity

𝜔𝜔: angular velocity

pole angle

(b) Data collection: data collection is a simulation/inference loop. Common RL training frame-
works useCPU-based simulator implementations (e.g., OpenAI gym), and assemble a singlemini-
batch to perform inference on the GPU. Data collection hyperparameters (N simulator instances,
K simulator steps) are shown.

Figure 1: RL training loop: A high-level breakdown of how RL training is performed.
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Figure 2: Comparing popular RL simulators: simulation
throughput of XLA GPU implementations of popular robot-
ics physics simulators are shown. The throughput of the
simple cartpole simulator is similar to robotics simulators,
which allows us to focus our analysis on cartpole to reduce
implementation complexity.

DNN frameworks provide a pre-compiled library of GPU ker-
nels for common deep learning operators (e.g., matrix multipli-
cation, convolution, etc.), allowing developers to compose and
build model architectures. GPU kernels are either provided by the
framework itself (e.g., element-wise operations), or accelerator-
specific vendor libraries that have tuned specific operations for
high-performance (e.g., matrix multiplication operators from the
cuBLAS [16] library when using NVIDIA GPUs). The DNN frame-
work we study in this paper is PyTorch, which is popular for its
developer-friendly eager execution model. Eager execution exe-
cutes operations as GPU kernels as they are issued from Python

Simulation

FC FC FC

Inference

GPU
𝑵 simulator states actions

Figure 3: Optimization 1. GPU vectorization: simulation is
vectorized to operate on multiple parallel environments 𝑁
on theGPU.Multiple implementations can achieve this opti-
mization, either through DNN operators (XLA, PyTorch), or
bymanually writing kernels to parallelize simulators across
GPU threads (CUDA).

[22], which conveniently allows developers to inspect intermedi-
ate DNN computations. While convenient, a greater number of
GPU kernel launches can suffer from kernel launch overhead and
increased memory bandwidth requirements from reading/writing
device memory between kernel launches.

ML compilers parse the entire DNN computational graph and
perform global optimizations over that graph to increase execution
efficiency. In this paper, we focus on the XLA compiler [11], which
targets an intermediate representation consisting of elementary
DNN operations which are amenable to execution on both TPU and
GPU accelerators. In particular, we use the JAX [3] Python fron-
tend library to XLA. XLA provides an API analogous to high-level
linear algebra libraries (i.e., Python’s NumPy [15]), but additionally
supports just-in-time compilation to accelerator kernels using a
symbolic tracing of tensor shapes. As a result, certain simple op-
erations like element-wise operations can be fused into a single
GPU kernel launch to increase performance compared to DNN
frameworks.



MLBench 2022, September 1, 2022, Santa Clara, California, USA Gleeson et al.

3 GPU VECTORIZATION
We study the performance limitations of GPU vectorization (illus-
trated in Figure 3) through implementations spanning multiple ML
frameworks: an ML compiler (XLA), and a DNN framework (Py-
Torch). We demonstrate that both XLA and PyTorch have a 1024×
speedup when saturating parallel environments. However, at many
smaller configurations of parallel environments, XLA outperforms
PyTorch by 13.4× by amortizing CPU overheads when combining
multiple data collection steps in a single Python→XLA API call.

3.1 Hardware and Software Configuration
All analysis in this paper was performed on hardware consisting
of an AMD EPYC 7371 CPU running at 3.1 GHz with 128 GB of
RAM and an NVIDIA 2080Ti GPU. For software configuration, we
used Ubuntu 20.04, CUDA 11.2.0, GCC 9.3.0, PyTorch v1.8.1, JAX
frontend v0.2.13 with jaxlib backend (XLA) v0.1.67, and Python
3.8.10.

3.2 Data Collection Implementations
To measure the benefit of GPU vectorization, we created data col-
lection implementations spanning multiple hardware types and
ML frameworks. For the CPU implementations of simulation, we
consider both the status-quo single-core CPU approach used by
popular RL training frameworks (OpenAI gym), and a custom C++
implementation that utilizes multiple CPU cores. For the GPU im-
plementations of simulation, we consider commonly used DNN
frameworks (PyTorch), and more performance-oriented ML com-
pilers (XLA).

OpenAI gym: OpenAI gym provides a scalar (single instance)
implementation of the cartpole simulator that stores the simulator
state within a numpy array of 𝑆 = 4 floating point state values.
Each step of the simulator is performed using an object-oriented
API with a 𝑠𝑡𝑒𝑝 () state transition function, with multiple simulator
instances implemented using multiple object instances. Due to
inefficient shared memory multi-threading in the Python high-level
language, RL training frameworks opt to run multiple simulator
instances on a single CPU core to maximize their performance.
MLP inference uses a single PyTorch model and combines multiple
simulator outputs into a single inference minibatch that is copied
to a GPU tensor input. This common approach to data collection is
illustrated in Figure 1b.

C++: To explore the limits of multi-core CPU-based simulator
implementations without being limited by the high-level language
overheads of OpenAI gym, we implement the cartpole simulator
using shared memory multi-threading. While the simulation runs
on the CPU, the inference component still uses PyTorch, with infer-
ence/simulation output being shared efficiently through a shared
device memory allocation.

PyTorch:We converted the OpenAI gym cartpole simulator into
a GPU implementation using PyTorch operators. This is achieved
by vectorizing the numpy implementation by storing multiple (𝑁 )
simulator instances in an 𝑁 × 𝑆 state matrix, and replacing scalar
operations with vectorized ones. PyTorch is an eagerly executed
DL framework; that is, Python→DL backend API calls are executed
on the GPU as the user invokes them from Python.

XLA: Similar to PyTorch, we created a vectorized GPU imple-
mentation using XLA operators by storing multiple (𝑁 ) simulator
instances in an 𝑁 × 𝑆 state matrix. In contrast to PyTorch which
eagerly executes Python→DL backend calls on the GPU, JAX’s
numpy-like interface builds an entire symbolic computational graph
composed of XLA operators. This graph-based approach allows us
to perform multiple data collection steps in a single Python→DL
backend call which, as we will see, has performance implications.

3.3 Data Collection Throughput
In Figure 4, we run the data collection loop andmeasure the through-
put in samples/second of data collected. Each implementation has
a maximum data collection throughput plateau: C++ at 218, Ope-
nAI gym at 216, PyTorch at 226, XLA at 226. Moving simulation to
the GPU using either PyTorch or XLA can provide up to a 1024×
speedup over the status quo approach of OpenAI gym’s CPU sim-
ulation. Using multiple CPU cores with C++ only accounts for at
most a 4× speedup over the single-core OpenAI implementation.

F.1 Both DL framework (PyTorch) andML compiler (XLA)
GPU vectorization approaches can provide up to a 1024×
speedup in data collection over OpenAI gym.

Since XLA can express loop control-flow structures, we can de-
fine the entire data collection loop as a computational graph, which
is invoked with a single Python→XLA API call. Since PyTorch is
eagerly executed, control-flow constructs are expressed in Python
resulting in multiple calls from Python into PyTorch for each step
of data collection. As a result, the data collection throughput for
PyTorch does not change as we increase the steps. On the other
hand, XLA benefits from increased throughput.

Increasing the number of consecutive data collection steps ex-
ecuted in a single Python→XLA API call from 100 → 103 results
in a 53.8× speedup on average for most environment sizes (≤ 213),
which is a 13.4× speedup over PyTorch. An important question
this raised was whether XLA could be performing kernel fusion
across multiple steps, given that it has complete computational
graph knowledge. To investigate this, we performed a profiling
deep dive of the XLA implementation.

3.4 Time Breakdown of XLA GPU Data
Collection

To understand the underlying bottlenecks that exist in the XLA
GPU implementation of data collection, it is helpful to get a time
breakdown of where total execution time is spent across the stack.
To obtain this time breakdown, we used RL-Scope [10]. RL-Scope
provides a full-stack breakdown of time across the CPU, GPU, and
within different parts of RL computation, such as inference and
simulation.

F.2 In contrast to DNN frameworks (e.g., PyTorch),
ML compilers that can express control-flow constructs
(e.g., XLA) can reduce CPU-based overhead by reduc-
ing Python→Backend API calls. However, more complete
computational graph information is not being used to fuse
simulation and inference GPU kernels.
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Figure 4: GPU data collection: DL frameworks can express
simulation as GPU computation, exploiting GPU hardware
parallelism and reducing CPU overheads from switching
back and forth to GPU computation. GPU implementations
achieve much higher throughput than both CPU implemen-
tations (OpenAI gym, C++) of simulation.
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Figure 5: XLA GPU time breakdown: as we increase the
number of data collection steps completed in a single
Python→XLA API call, CPU overheads from Python and
Backend C++ code are amortized, and GPU time saturates
the computation. Number of environments 𝑁 = 216.

In Figure 5, we observe that at small step sizes like 100, CPU-
bound operations make up 87% of data collection time split across
backend C++ calls (30%) and Python time (57%). As we increase the
number of steps executed in a single XLA API call, CPU overheads
are amortized, which contributes to the overall speedup achieved
by the XLA implementation at higher step sizes.
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Figure 6: XLA API transition counts: CUDA shows the num-
ber of GPUkernel launches, and Backend shows the number
of Python→DL backend (i.e., XLA) API calls. Python→XLA
API calls (Backend) remain constant even aswe increase data
collection steps, explaining amortized CPU overheads. How-
ever, GPU kernel launches (CUDA) increase linearly, indicat-
ing kernel fusion does not occur across data collection steps.

To determine whether these performance benefits could be due
to kernel fusion by XLA, we measured the number of GPU kernel
launches during an iteration of data collection. In Figure 6, CUDA
shows the number of GPU kernel launches, and Backend shows
the number of Python→DL backend (i.e., XLA) API calls. In Fig-
ure 6, as expected, as we increase the number of steps handled
in a single XLA API call, the number of Python→Backend calls
remains constant, explaining why CPU overhead was amortized.
If we look at the number of GPU kernel launches (CUDA), they
scale linearly with the step size. This tells us that XLA is not per-
forming kernel fusion at higher step sizes. Further inspection of
kernel launches reveals additional calls to simulator kernels, and
also cuBLAS matrix multiplication kernels from inference which
are inherently infusible since they are closed source.

Our profiling demonstrates that kernel fusion remains an unex-
plored optimization for the RL training loop. As an initial step in
this direction, we next investigate fusing multiple simulation steps
to understand the potential performance benefit of fusion.

4 SIMULATOR KERNEL FUSION
GPU kernel fusion can benefit from (1) reduced kernel launch over-
head from fewer kernel launches, and (2) increased cache efficiency
by avoiding device memory transfers. Based on our profiling results
(Section 3.4), more performant ML compiler implementations can-
not fuse GPU kernel launches across multiple data collection steps.
To study the effects of kernel fusion, we implement a purely CUDA
implementation of simulation where we can precisely control the
number of GPU kernel launches during simulation (illustrated in
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Simulation

GPU

𝑲 simulation steps

Figure 7: Optimization 2. Simulator kernel fusion: simula-
tion is a short duration kernel that performs row-wise op-
erations, so fusing it into one kernel launch in CUDA will
benefit from (1) reduced launch overhead from fewer ker-
nel launches, and (2) increased cache efficiency of simulator
state. 𝐾 simulator steps are executed in a single fused GPU
kernel launch.

Figure 7). We demonstrate that kernel fusion is an orthogonal opti-
mization that can be combined with GPU vectorization leading to
multiplicative benefits.

4.1 Simulator Kernel Fusion Throughput
Since the simulation kernel for cartpole is short and consists of sim-
ple row-wise operations, fusing simulation steps will benefit both
from reduced launch overhead and increased efficiency of keeping
intermediate simulator state in cache. To explore kernel fusion,
we added a CUDA implementation, in addition to the GPU-based
PyTorch and XLA implementations of simulation (Section 3.2):

CUDA: To explore the limits of GPU-based kernel fusion and
control kernel fusion decisions, we manually implemented a GPU
kernel for simulating multiple cartpole instances in parallel. Mul-
tiple simulation steps are executed within a single kernel launch,
minimizing kernel launch overhead and maximizing data reuse.

In Figure 8, we show the simulation throughput of different im-
plementations of multi-step simulation. Since PyTorch has an eager
API, the number of GPU kernel launches scales linearly with the
number of steps and cannot benefit from kernel fusion, causing
the 𝐾 = 100 and 𝐾 = 103 lines of PyTorch to overlap. Since XLA is
provided with the full computational graph for iteratively perform-
ing simulation, multiple simulation steps can be condensed into a
single Python→XLA call, amortizing CPU overheads, leading to a
83.3× speedup for XLA going from 𝐾 = 100 → 103.

Since CUDA is handwritten to execute multiple simulator steps
in a single kernel launch, it can benefit both from reduced kernel
launch overhead and better caching of simulator state in registers.
The 112.8× speedup for CUDA→XLA for 𝐾 = 103 benefits both
from kernel fusion and reduced framework API overhead. To isolate
the benefit from kernel fusion alone, we can consider the speedup
for CUDA going from 𝐾 = 100 → 103 steps; we see that kernel
fusion accounts for a 11.3× speedup.

F.3 For repeated simulation steps, kernel fusion can pro-
vide 11.3× speedup over an unfused implementation of the
cartpole simulator.
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Figure 8: Simulator kernel fusion: simulation throughput
benefits from increased fusion at a higher number of fused
simulation steps 𝐾 . XLA does not fuse GPU kernels but still
benefits from amortizing CPU overheads. CUDA benefits
from fusing kernel launches (i.e., reduced launch overheads,
cached simulator state).

4.2 Simulator Complexity
An important consideration is how the speedup from fusion varies
as we increase the complexity of the simulator. In particular, the
simulator could be more compute-bound, more memory bandwidth
bound, or both. To answer this question, we took the cartpole sim-
ulator and added configurable parameters to increase the compute
and memory requirements of the simulation. The compute factor𝐶
increases the compute requirements of cartpole by 𝐶× by increas-
ing the number of simulation iterations. The state factor 𝑆 increases
the cartpole state size by a factor of 𝑆×, resulting in 𝑆× as many
global memory loads and stores. To measure the speedup due to
fusion, we normalize the simulation throughput with respect to
a fusionless run (i.e., steps 𝐾 = 100). Figure 9 shows the speedup
from fusion along all configurable workload dimensions (parallel
environments 𝑁 , fused steps 𝐾 , state factor 𝑆 , compute factor 𝐶).

Number of parallel environments (𝑁 ): As we increase𝑁 (left
to right across subplots), the speedup from fusion remains the same.
For example, the last row of plots (steps 𝐾 = 103) all plateau to
a fusion speedup of 210. Hence, the benefit from kernel fusion is
independent of how many parallel environments are used; kernel
fusion is an orthogonal and combinable optimization with GPU
vectorization.

State size factor (𝑆×):As we increase 𝑆 (left to right along the x-
axis of each subplot), the simulation becomes increasingly memory
bandwidth bound due to increased global memory loads/stores.
Increasingly memory bandwidth bound kernels benefit more from
fusion since fusion reduces global memory transfers. For example,
for the last row of plots (steps 𝐾 = 103), the speedup varies from 24
to 210 as 𝑆 increases.

Number of fused steps (𝐾): As we increase 𝐾 (top to bot-
tom across subplots) the speedup increases more significantly in
memory bandwidth bound workloads. For example, less fusion
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Figure 9: Simulator complexity: the compute factor 𝐶 increases cartpole compute requirements by 𝐶× and state factor 𝑆 in-
creases memory bandwidth requirements by 𝑆×. The fusion speedup is measured by normalizing with respect to a fusionless
run (i.e., steps 𝐾 = 100). Parallel environments 𝑁 increase from left to right subplots, and number of fused steps 𝐾 from top to
bottom subplots.

(steps 𝐾 = 101) achieves at most 23 speedup, whereas more fusion
(steps 𝐾 = 103) achieves at most 210 speedup at large state factors
(𝑆 ≥ 211).

Compute factor (𝐶): As we increase 𝐶 (the lines of each sub-
plot), the simulation becomes increasingly compute-bound due
to additional simulation iterations. The more compute-bound the
workload is, the less speedup that comes from fusion since the
workload is not benefitting from greater data reuse by reducing
global memory transfers. In the worst case where the simulation
is entirely compute bound (𝐶 = 210) and not memory bandwidth
bound (𝑆 = 20), fusion performs just as poorly as without fusion.

F.4 Kernel fusion benefitsmemory bandwidth bound sim-
ulation kernels with low tomoderate compute complexity
by reducing global memory transfers. The speedup from
kernel fusion is independent of how many parallel sim-
ulators are used and should be considered an orthogonal
and hence combinable optimization.

5 RELATEDWORK
Related work falls into two categories, which we summarize here
and discuss in detail below. Prior work has demonstrated training
time speedups from moving simulation to the GPU by performing
GPU vectorization either by expressing simulation as DNN opera-
tors [9] or with manually written CUDA code [8, 24]. In contrast
to those works, we perform an apples-to-apples comparison of
multiple vectorization implementations to understand inherent

performance limitations associated with hardware and ML frame-
work choice. We demonstrate that ML compiler frameworks can
outperform DNN framework implementations by amortizing CPU
overheads, but that current ML compiler frameworks cannot per-
form kernel fusion that would benefit RL training workloads. Kernel
fusion is a common optimization pass for ML compilers but is typi-
cally limited to element-wise operations [5], with some compilers
opting to offload high-performance operations to infusible cuBLAS
libraries [11]. In this paper, we do not limit ourselves to the current
capabilities of ML compilers, and instead measure the potential ben-
efits achievable if kernel fusion were implemented today in these
ML compilers by exploring manual fusion of simulation kernels
implemented in CUDA.

GPU vectorization: Brax [9] implements a general physics en-
gine in JAX that can support many environments consisting of
connected rigid bodies, allowing them to support common robotics
physics simulators. The physics engine implementation parallelizes
the computation across both environments and joint angles. Brax
leverages accelerator (i.e., GPU, TPU) parallelism during simulation
in RL training, allowing them to achieve significant training time
speedups (266× on a V100 GPU) over simple single CPU core simu-
lators [26]. In contrast to Brax, our evaluation of the performance
benefit of GPU vectorization is more thorough for four reasons.
First, we consider a multi-core C++ implementation for the CPU
instead of just a naive single-core CPU implementation. Second,
we demonstrate a 53.8× speedup in XLA by combining multiple
data collection steps in a single Python→XLA API call to amortize



MLBench 2022, September 1, 2022, Santa Clara, California, USA Gleeson et al.

CPU overheads. Third, besides an ML compiler approach (XLA),
we also compare against common DL framework implementations
(PyTorch) and demonstrate how the superior 13.4× performance
of XLA over PyTorch on the GPU is achieved through multiple
data collection steps. Finally, through profiling, we show that XLA
cannot perform kernel fusion in data collection, which motivates us
to investigate kernel fusion as a novel and orthogonal optimization
in RL training.

CuLE [8] explores porting the C++ Atari emulator to CUDA to
run on GPUs, with each GPU thread executing an Atari hardware
emulator instance. Emulating the Atari CPU architecture on the
GPU leads to degradation in performance due to branch divergence.
As a result, the observed speedup over CPU is at most 2.54× when
training Atari Assault on a Titan V GPU. In contrast to this paper,
CuLE implements the Atari simulation only in CUDA; it is likely
not possible to express non-data-parallel operations like hardware
instruction emulation using DNN framework or ML compiler sup-
ported operators. We instead focus on physics simulators that are
more amenable to the GPU architecture, allowing us to investigate
the performance limitations of both DNN frameworks and ML com-
piler implementations, and explore kernel fusion optimizations that
are not explored in CuLE.

Kernel fusion: TVM [5] is an ML compiler that enables de-
velopers to write DNN operators in a high-level domain-specific
language (DSL), with the final output being lowered to various
different hardware backends (e.g., GPU, TPU, FPGA). TVM imple-
ments several optimization passes over the computational graph,
including operator fusion. TVM operator fusion is limited to fusing
with element-wise operations (called “injective” operators) as they
are the simplest to fuse. In particular, injective operators fuse with:
other injective operators (e.g., 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 ◦ 𝑟𝑒𝑙𝑢), the input of a
reduction (e.g., 𝑠𝑐𝑎𝑙𝑒 ◦ 𝑠𝑢𝑚), or the output of a complex-out-fusible
(e.g., 𝑐𝑜𝑛𝑣2𝑑 ◦ 𝑟𝑒𝑙𝑢). We chose not to use TVM to implement fusion
since our simulator is row-wise not element-wise, and we wanted
to tightly control how the simulator state is managed during fusion
and explore performance implications.

XLA [11] is a compiler for linear algebra programs (e.g., DNNs)
with operators that can be lowered to backend targets (i.e., TPU,
GPU, CPU). Frontend APIs like JAX [3] builds on top of XLA by
offering JIT compilation of operator graphs into optimized backend
code. The operator fusion compiler pass heuristically tries to reduce
memory bandwidth [13]. Producer-consumer fusion allow fusion
of element-wise operations (e.g. fused 𝑎𝑑𝑑 ◦ 𝑟𝑒𝑙𝑢). Sibling fusion
fuses operators that share a common input to reduce global mem-
ory reads, interleaving the operator outputs as a tuple (e.g., fusing
𝑠𝑢𝑚(𝑥) and 𝑠𝑢𝑚(𝑥2) for computing 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚). In this paper, we
found that kernel fusion across the inference and simulation bound-
ary is not possible since XLA still relies on closed-source cuBLAS
matrix multiplication kernel implementations. This motivated us
to explore the potential benefits of performing kernel fusion in the
simulation phase of training by manually implementing simula-
tion CUDA kernels, and how these speedups vary with respect to
simulator complexity. Our exploration of the circumstances under
which simulators benefit from kernel fusion are important for in-
corporating compiler-based kernel fusion optimizations that target
RL workloads.

6 CONCLUSIONS
We demonstrated that the speedups from GPU vectorization are
substantial, with up to 1024× speedup for a simple simulator. We
showed that ML compilers (XLA) outperform DNN frameworks
(PyTorch) by 13.4× by amortizing CPU overheads across multiple
backend API calls. For simulator kernel fusion, we showed that the
speedups from kernel fusion for a simple simulator are 11.3× and in-
crease by up to 1024× as simulator complexity increases in terms of
memory bandwidth requirements. The speedups from kernel fusion
are orthogonal and combinable with GPU vectorization, leading to
a multiplicative speedup. We hope our study spurs greater interest
in specialized optimizations targeting emerging RL workloads.

7 FUTUREWORK
Our initial analysis demonstrated that large speedups are possible
with both GPU vectorization and simulator kernel fusion, and that
these speedups are combinable. In future work, we will study addi-
tional simulators such as robotics physics simulations, and perform
fusion across simulation and inference GPU kernels to speedup the
data collection process in today’s RL workloads.

Simulation/inference fusion:We limited our implementation
of kernel fusion in CUDA to multiple simulation steps, but did not
include inference. The benefit of this approach is that it reduced
engineering complexity and allowed us to compare the perfor-
mance and inherent limitations of several approaches to optimizing
multi-step simulation (XLA, PyTorch, CUDA). However, to accel-
erate RL training, in the future we must apply fusion to the full
data collection simulation/inference loop. Given that we cannot
manually fuse closed-source GPU kernels, we will need to obtain
high-performance open-source GPU kernels with performance com-
parable to cuBLAS. Based on our analysis of large fusion benefits in
memory bandwidth bound simulators, we suspect that kernel fusion
will still benefit DNN inference computations that have memory
bandwidth bound behaviour. Memory bandwidth bound kernels
are known to occur in matrix multiplication for irregularly shaped
tall/skinny matrices [6] that are typical for RL inference due to the
simulator state matrix.

Exploring additional simulators: Our analysis focused on
the simple cartpole simulator, which allowed us to explore the in-
fluence of ML framework and hardware on kernel fusion across
different implementations. Further, our study of simulator com-
plexity demonstrated that increasingly memory bandwidth bound
simulators benefit the most from kernel fusion. Hence, our imme-
diate next step will be to explore additional simulators of varying
memory/compute complexity to investigate how many existing
simulators can benefit from kernel fusion. Our first step in this
direction will be to re-implement popular robotics simulators from
Brax [9] in CUDA and see how manual kernel fusion compares
to the kernels produced by XLA. We would also like to explore
photorealistic simulators built on industrial video game engines
used in autonomous driving [18] and factory robotics scenarios
[19] since these simulators are large contributors to total training
time.
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