
HOTLINE PROFILER: AUTOMATIC ANNOTATION AND A MULTI-SCALE
TIMELINE FOR VISUALIZING TIME-USE IN DNN TRAINING

Daniel Snider 1 2 Fanny Chevalier 1 3 Gennady Pekhimenko 1 2

Single Timescale

(a) Existing: TensorBoard

Coarse Timescale Coarse Timescale

Finer Timescale

(b) Ours: HOTLINE

Figure 1. Hotline generates annotations of DNN concepts that existing runtime tracing profilers do not currently offer and visualizes
them in a novel Multi-Scale Timeline. HOTLINE uses color and size of operations to highlight bottlenecks across the stack. Users can
interactively drill down to progressively smaller timescales and view kernel runtimes at the lowest level (see Appendix B for examples).

ABSTRACT
Profiling is a standard practice used to investigate the efficiency of software and hardware operation at runtime
and is a crucial part of proving new concepts, debugging problems, and optimizing performance. However, most
machine learning (ML) developers find profiling secondary to their goal of improving model accuracy or just too
difficult (especially with existing ML tools). As a result, profiling is frequently an afterthought, and so many ML
developers rely on opaque metrics such as iteration time and GPU utilization which give little insight into why
ML training may be slow. This leads developers to spend excessive time investigating performance issues. In this
work, we aim to provide better tools to the large group of ML developers who currently do not profile their deep
neural network (DNN) training workloads or are not happy with existing tools.

To help ML developers investigate and understand time-use in DNN training, we propose HOTLINE, a novel
profiler designed specifically for runtime bottleneck identification. HOTLINE is the first profiler to automatically
annotate a standard data format for program runtime traces with DNN concepts that most ML developers are
familiar with, i.e. the DNN training loop and model architecture. HOTLINE does so without modifying DNN
libraries or making use of vendor-specific tools and introduces no additional overhead on measurements. We
further introduce noise reduction techniques and a multi-scale timeline visualization to make the presentation of
DNN runtime data more insightful, familiar, and easy to navigate. We demonstrate HOTLINE’s utility through
in-depth case studies of finding bottlenecks in real-world DNN applications and we report on a user study with 17
software developers in which most participants were able to perform common performance investigation tasks in
under 30 seconds (avg = 26 sec) and further commented that HOTLINE’s visualization “takes less time to find
insights compared to existing approaches”. Source code: https://github.com/UofT-EcoSystem/hotline.

1Department of Computer Science, University of Toronto, Toronto, Ontario, Canada 2Vector Institute, Toronto, Ontario, Canada
3Department of Statistics, University of Toronto, Toronto, Ontario, Canada. Correspondence to: Daniel Snider <dans@cs.toronto.edu>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL, USA, 2023. Copyright 2023 by the author(s).

https://github.com/UofT-EcoSystem/hotline

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

1 INTRODUCTION

The recent success of deep learning (DL) (He et al., 2016;
Devlin et al., 2018; Hannun et al., 2014) has resulted in
an increasing amount of compute and energy dedicated
to training deep neural network (DNN) models (Amodei
& Hernandez, 2018; Bianco et al., 2018; Horowitz, 2014;
Strubell et al., 2019). Much of the success of DL is credited
to increasing algorithm and system efficiency (Sutton, 2019;
Hernandez & Brown, 2020; Eassa & Burc Eryilma, 2022).
However, inefficient bottlenecks in DNN training are likely
still a widespread problem, because DNN development (1)
is often performed by ML developers and data scientists
with limited background in system-level optimization, (2) is
developed through ad-hoc prototyping, and (3) makes use of
rapidly evolving DNN libraries. Recent works (Chen et al.,
2018b; Zheng et al., 2020b; Vasilache et al., 2018) and DL
libraries (Abadi et al., 2016; Frostig et al., 2018; Chen et al.,
2015; Chetlur et al., 2014) try to make performance opti-
mizations automatic for developers, but there is evidence
that those works do not cover all major optimization possi-
bilities (Ivanov et al., 2021; Shacklett et al., 2021; Petrenko
et al., 2020; Dalton et al., 2020; Andoorveedu et al., 2022).
There remains room for developers to recognize and guide
optimizations; but who does this, how, and how can we do
it better?

The desire to find optimization opportunities motivates the
need for profiling tools to investigate the operation of soft-
ware and hardware at runtime (Joukov et al., 2006) and
visualizations to help users analyze profiler data, support rea-
soning, and communicate findings (Munzner, 2014). There
exists a limited number of ML system performance experts
and they typically use custom (Hu et al., 2022; Zhu et al.,
2020; 2018; Gleeson et al., 2021) or expert-level profiling
tools (NVIDIA, 2018b; Intel, 2020; Google, 2022) to find
optimization opportunities. We strongly believe that we
cannot bank on scaling up the number of ML system per-
formance experts. Instead, a more sustainable and valuable
approach is to equip the larger community of ML/DNN al-
gorithm and model developers1 with better tools. Even the
most basic questions “What is slow?” and “Why is it slow?”
are challenging to answer with existing DNN profiling tools
(Google, 2015; NVIDIA, 2018b). While these tools generate
the necessary data to investigate these questions, processing
and understanding this data is difficult.

Existing approaches fail to distill the overwhelming amount
of information generated into insights that are clearly ex-
pressed and easily interpreted (Bohnet et al., 2009; Weber
et al., 2015). We observe that interpreting DNN training
runtime traces, which include the runtime of every executed
operation, is challenged by several factors including infor-

1In the rest of the paper, we will simply refer to our target
audience as “developers” for short.

mation overload (e.g., the backward pass of an RNN-T
model (MLCommons, 2021) is comprised of 363,095 op-
erations), disparate granularities (e.g., a single timeline
view of very short and very long operations is hard to see,
navigate, and compare), and discontiguous execution (e.g.,
relationships between operations may be hard to follow due
to asynchronous and distributed processing). As a result,
profiling is often an afterthought and so ML developers
mainly rely on basic metrics such as training iteration time,
or coarse system efficiency metrics such as GPU utiliza-
tion. These metrics are high-level, aggregate, and opaque.
They give little insight into the system operation of DNN
training and so the developers may spend excessive time
investigating performance issues (they “search for a needle
in a haystack”) or write code without understanding the
problem (they “try stuff until it works”).

Our research aims to address these challenges from the per-
spective of identifying bottlenecks, rather than follow-up
questions of “Why is it a bottleneck?”, and “What should be
done about the bottleneck?”. In our work, we identify bot-
tlenecks using detailed measurements of how time is spent
during DNN training, rather than resource utilization where
high utilization could be a good or bad sign. Our approach
differs from prior profiling techniques because we leverage
two key observations based on the unique characteristics of
common ML/DNN training workloads. First, we observe
that DNN operations in runtime traces are serialized in an
order that is highly predictable. Second, these operations
appear in runtime traces with names that are recognizable
and can be attributed to known portions of the DNN training.
These observations allowed us to develop an automatic of-
fline annotation algorithm for minimal/lightweight tracing
profilers to generate new annotations which shed light on
where bottlenecks lie without incurring additional overhead
on timing measurements and minimal instrumentation effort
required in DL source code.

In this paper, we propose HOTLINE, a novel profiler de-
signed specifically for runtime bottleneck identification in
DNN training. HOTLINE generates three types of annota-
tions that existing profilers do not offer: (1) the steps of the
DNN training loop, (2) the architecture of the DNN model,
and (3) arbitrary but interesting sections not defined in the
user’s DL source code, such as inter-GPU communication.
HOTLINE supports users who manually add custom anno-
tations into traces at runtime. Those annotations will not
interfere, they will be treated as arbitrary sections, and they
will be displayed by HOTLINE. Furthermore, HOTLINE
applies a suite of noise reduction heuristics to annotations
that summarize, rename for brevity, or hide redundancies to
trade information completeness for improved interpretation.

A key contribution of HOTLINE is the introduction of the
Multi-Scale Timeline (Richter et al., 1999) to system profil-

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

ing of DNN model training. A multi-scale timeline allows
users to see multiple timescales in one view, i.e. low-level
details and high-level context (see Figure 1), which eases
understanding. HOTLINE initially shows the runtime of
only the highest-level operations in the DNN training loop
to present a simple and familiar view. Users can drill down
using Semantic Zooming (Aigner, 2014), an interaction tech-
nique that is faster, simpler, and more exact than using pan-
and-zoom which is found in existing runtime trace viewers.

We evaluate the usefulness and effectiveness of HOTLINE
through a series of case studies. In the first case study, we
show how HOTLINE enables ML developers to see how de-
cisions about model architecture affect runtime; how using
HOTLINE can be a positive learning experience; and, for
example, how quickly we can find an optimization oppor-
tunity worth up to 40% in training a popular ResNet-50
model (He et al., 2016). In the second case study, we show
how HOTLINE can perform rapid low-level investigations
by using HOTLINE’s “Open with Perfetto” button to isolate
interesting portions of the runtime trace and quickly switch
to a more detailed profiling tool (Google, 2022). For exam-
ple, using HOTLINE to view only the backward pass of an
RNN-T model on 4 GPUs, we discovered that the GPU is
only executing kernels 30% of the time and is bottlenecked
by CUDA API launch overhead. In a third case study, we
show how HOTLINE’s annotation of arbitrary sections of
training enabled us to find unexpected bottlenecks. For
example, we find in training ResNet-50 on 4 GPUs that
PyTorch’s default parallel training mode spends 67% of the
forward pass replicating the DNN model to all GPUs and
50% of backward pass reducing gradients onto 1 GPU from
the other 3 GPUs. This may be a surprise to users because
they may not be aware of these stages or that they are so
slow.

Additionally, we collected qualitative feedback from soft-
ware developers at our institution on our design concept, not
the implemented tool itself, to guide and validate features
before implementation. We report on evidence that HOT-
LINE’s visual approach is a good match for the user’s task
and mental model of runtime profiling. For example, 97%
of the time participants were able to perform common ML
profiling tasks without help when using a non-interactive
mockup of HOTLINE.

Our contributions are summarized as follows:

• We observe fundamental challenges in DNN training run-
time traces which make finding insights and bottlenecks
difficult, and then develop a new strategy to attract devel-
opers to profiling.

• We propose HOTLINE, the first DNN profiler to annotate
DNN concepts with no impact on timing measurements
and minimal instrumentation. HOTLINE denoises runtime
traces to make insights clearer and visualizes results in an

interactive multi-scale timeline that is easier to navigate
and quicker to isolate interesting portions of event traces
than with existing tools.

• We present case studies of how HOTLINE can be used
to identify and understand time-use bottlenecks in real-
world DNN training across a variety of models including
ResNet, RNN-T, and Transformer.

• We report on a qualitative user study of software develop-
ers at our institution in which 94% (16/17) of participants
said that HOTLINE’s visualization design concept “helps
them understand program runtime”, and 82% (14/17)
said that HOTLINE’s visualization “takes less time to find
insights compared to existing approaches”.

2 WHY MANY ML DEVELOPERS DO NOT
PROFILE, EVEN THOUGH THEY SHOULD

2.1 Background on Profiling

Profiling is a crucial part of proving new concepts, debug-
ging problems, and optimizing performance (Joukov et al.,
2006). The concept of profiling can easily be confused with
monitoring and tracing. Let us first disambiguate our use of
these terms. Monitoring is ongoing and can be used to trig-
ger alerts such as when a monitored resource falls above or
below a trigger level (Thor, 2012). While tracing is tracking
the flow of a request or data through a network, program, or
disturbed system (Kaldor et al., 2017). Whereas profiling is
usually done on a particular program to see which code is
using the most resources (Graham et al., 1982).

What profiling do people do today in DNN training? Aside
from performance engineers and researchers who develop
custom tools (Hu et al., 2022; Zhu et al., 2020; Gleeson
et al., 2021; Yu et al., 2021) or use expert-level profiling
tools (NVIDIA, 2018b; Intel, 2020; Google, 2022), there
are two types of ML developers: (1) those who are not
particularly interested in system efficiency because it is sec-
ondary to their goal of DNN model accuracy, and (2) those
who see the value but find it demands too much systems
knowledge or engineering effort to profile (Yu et al., 2020).
Both types of developers commonly push the limits of their
hardware and subsequently ask seemingly simple questions
like, “Why is training slower than expected?” and “What
is the slowest part of training?”. Finding answers to these
questions requires runtime profiling.

2.2 Background on Runtime Profiling

Runtime is an important performance metric because
time is an absolute metric that sums up program be-
havior enabling users to identify slow sections and
where to target optimizations. The naı̈ve approach is
to manually insert print statements with timestamps, or
vendor-specific annotations such as NVTX (NVIDIA,

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Figure 2. Runtime profilers record a timeline of events. Here we
see a portion of a single training iteration of an RNN-T model
visualized with the Perfetto trace viewer. We have drawn red
annotations to show a zoomed-in portion of events.

2020b), pytorch.record function (Facebook, 2021),
or jax.named scope (Google, 2022), but this has poor
code coverage and introduces significant developer effort.
Alternatively, tracing profilers instrument the program to
record every function call during program execution and
produce a detailed event trace of exactly what operations
took place and when (Evans, 2017). Figure 2 shows an ex-
ample runtime event trace produced by the PyTorch tracing
profiler (Facebook, 2022). The content of tracing profiler
data produced by PyTorch consists of an array of events each
with a timestamp, duration, operation name, and other data
such as function arguments (e.g., input data dimensions).

2.3 Why is Interpreting Runtime Data Challenging?

Despite the importance of using runtime profiling tools to
find optimization opportunities, we observe several chal-
lenges when interpreting runtime data, which impede adop-
tion by non-experts. Runtime data is often complex, multi-
dimensional, and noisy, and therefore it becomes difficult
for humans to see patterns, trends, and outliers by looking at
it in its raw form. Figure 2 illustrates these challenges and
is representative of existing trace viewers including Tensor-
Board (Google, 2015), Nsight Systems (NVIDIA, 2018b),
and Perfetto (Google, 2022).

Challenge 1: Information Overload
Existing visualizations fail to convey a high degree of use-
ful information due to information overload caused by the
large number of operations typically found in DNN training.
For example, we find that a single training iteration on 4
GPUs for an RNN-T model produces almost one million
operations as seen in Figure 2. This vast quantity puts a
large burden on users, requiring excessive effort to navigate
and interpret large runtime traces, and makes it non-trivial
to summarize or hide some details.

Challenge 2: Disparate Granularities
Disparate granularities refers to operations whose runtimes
span significantly different timescales. For example, we

find that the high-level backward pass of an RNN-T model
(runtime 1.2 sec) is comprised of 363,095 low-level opera-
tions (avg. runtime 42 µs). Existing visualizations are not
easily interpretable because they display all operations at
all granularities on a single timeline view. A single view of
very short and very long operations is hard to see, navigate,
and compare. Zooming in and out between granularities is
tedious and only clearly displays one granularity at a time.

Challenge 3: Discontiguous Execution
Relationships between operations may be hard to follow due
to discontiguous execution patterns in which related opera-
tions are not next to each other, such as in asynchronous and
distributed processing. For example, asynchronous GPU
kernels can have their CPU and GPU portions very tempo-
rally distant, and the two operations will always be found
in different timelines, one for a CPU thread, and one for a
GPU stream. Furthermore, operations can be parallelized
across multiple GPUs or servers. These challenges have yet
to be addressed by existing works and result in fewer ML
developers performing or benefiting from profiling.

2.4 How to Attract Developers Who Do Not Profile?

To attract developers to profiling we can draw inspiration
from the qualities of past success stories of getting people
to do something new and complex. For example, how did
the iPhone get millions of people to use smartphones? The
iPhone was radically simpler to navigate by touch, it brought
together many utilities, and it was colorful, fast, and fun to
use. From this we draw our first design goal:

Goal 1: Easy to Navigate for everyone in a way that is
efficient and easy to remember when returning to the tool.

Similarly, consider the Linux monitoring tool htop
(Muhammad, 2004), it improved upon top (LeFebvre,
1984) by (again) improving interactivity, adding meaningful
color and graphs, and reducing visual noise by displaying
less text. Displaying less text reduces the cognitive burden
on users, is inviting to non-experts, and supports finding
insights more easily:

Goal 2: Reduce Noise so that insights are easier to find,
data is easier to navigate, and novices are not overwhelmed.

We also observe that the iPhone and htop did not do any-
thing radically new. They repackaged information and ap-
plications that users were already familiar with:

Goal 3: Familiar to everyone and only branch out when
the user wishes to expand their knowledge.

In this work, we set out to apply these successful qualities
which embody usability heuristics (Nielsen, 2005) to the
DNN profiling problem: our strategy to get more people to
measure is to make a profiler that is insightful, familiar, and
easy to navigate.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Visualize in
Multi-scale
Timeline

Annotate
• High-level training loop
• Forward & backward pass
• Arbitrary sections

Denoise
• Summarize
• Rename for brevity
• Hide redundancy

Model Definition

Runtime Trace
(minimal / lightweight)

User
Source

Code

Existing PyTorch Profiler Hotline Offline Analysis Hotline UI

Figure 3. HOTLINE system overview. A DNN model definition is used to guide automatic annotations of a DNN training runtime trace.
After applying denoising heuristics to simplify the runtime annotations they are displayed in a multi-scale timeline for users to investigate.

$./my_training_script.py # then open ‘results.json’ with UI

import torch.profiler
import torchvision.models
import hotline

model = torchvision.models.resnet50()
... other setup...

with torch.profiler.profile(
on_trace_ready=hotline.analyze(model)):
... training loop ...

Figure 4. How to instrument PyTorch code with HOTLINE.

3 HOTLINE: OVERVIEW

When investigating optimization opportunities, interpreting
raw DNN training runtime traces can be challenging for ML
researchers and developers. To greatly simplify the effort
required we propose HOTLINE2, a novel profiler designed
specifically for runtime bottleneck identification.

Figure 3 illustrates the workflow of HOTLINE. HOTLINE
parses the user’s DNN model definition including any user-
defined variable names for operations, or groups of opera-
tions such as layers, so that HOTLINE can summarize run-
time traces at any of these granularities (Goal 2: Reduce
Noise) and with names familiar to the user (Goal 3: Fa-
miliar). A runtime trace of a single representative iteration
of DNN training is collected after a user-chosen number
of warmup iterations. Then HOTLINE performs offline an-
notation of the trace with DNN concepts that most ML
developers are familiar with, i.e. the DNN training loop
and model architecture (Section 4). Next, these annotations
are summarized where possible to simplify or eliminate
less-interesting parts (i.e. “noise”) of the runtime trace (Ap-
pendix C.2). Finally, HOTLINE displays the runtimes of the
resulting annotations in a multi-scale timeline (Section 5), a
technique well suited to navigating complex timelines (Goal
1: Easy to Navigate).

We choose PyTorch (Paszke et al., 2019) as our prototyping
DL framework as it is one of the most widely used frame-
works. HOTLINE is designed in a general way that sup-

2The name HOTLINE name is a concatenation of the word
“HOT” which is the colormap we use to visually emphasize run-
time bottlenecks, and “LINE” which is taken from the multi-scale
timeline design that we introduce to ML system profiling.

ports a wide variety of models (e.g., ResNet, RNN-T, Trans-
former) without modifying PyTorch or relying on hardware
or software-specific knowledge. This means that HOTLINE
introduces no new overhead on timing measurements, does
not create vendor lock-in, and is easy to maintain and adapt
to new applications. The same ideas can be implemented on
top of other DL frameworks including TensorFlow (Abadi
et al., 2016), JAX (Frostig et al., 2018), and MXNet (Chen
et al., 2015) because they produce runtime traces in the
same standard Trace Event Format (Sinclair, 2016). Also,
HOTLINE is carefully designed to accommodate “novice”
developers. It can be used seamlessly with PyTorch training
scripts, and only requires adding one argument when using
PyTorch’s built-in profiler. To illustrate, Figure 4 shows
how to enable HOTLINE for ResNet-50.

4 HOTLINE: AUTOMATIC ANNOTATION

An annotation is a group of operations that share a common
purpose. Annotations have a runtime that spans from the
first start time to the last stop time of the operations in
that group. Annotations can cover various granularities
of a program. For example, in DNN training, annotations
may include the forward pass, layer 1, or an individual
convolution. To the best of our knowledge, HOTLINE is
the first profiler to provide annotations of DNN training
concepts across these granularities.

Annotations are fewer in number than raw events which
makes them easier to navigate (Goal 1) and less noisy (Goal
2). Furthermore, annotations of DNN concepts allow ML
developers to begin their profiling investigation at a level
of granularity they are familiar with (Goal 3). HOTLINE
processes a standard runtime trace data format (Sinclair,
2016) to generate three types of annotations automatically:
the steps of the DNN training loop (Section 4.2), the archi-
tecture of the DNN model (Section 4.3), and arbitrary sub-
sections of the DNN training loop and model (Section 4.5).

4.1 Key Observations to Enable Automatic Annotation

In this section, we highlight the key observations behind
HOTLINE’s automatic annotation design so that it does not
incur overhead on timing measurements and can utilize
PyTorch’s existing profiling instrumentation. Our major ob-
servations are based on the characteristics of the workloads

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

of most developers. While some DL researchers experiment
with novel approaches to DNN training, the majority of
developers in supervised DL use very similar training loops
(Ruder, 2016) and canonical model architectures (He et al.,
2016; Iandola et al., 2016).

In our evaluation of these common workloads, we observe
that DNN operations in runtime traces are serialized
in an order that is static, repeatable, and predictable.
We believe this observation holds for three reasons. Firstly,
most DNN models do not exhibit data-dependent control
flow so that they can be effectively accelerated by compilers
(Chen et al., 2018b; Zheng et al., 2022) and specialized hard-
ware (NVIDIA, 2018a; Barham et al., 2022). Secondly, to
achieve high accuracy, DL optimization algorithms (Dozat,
2016; Kingma & Ba, 2014) are most commonly used with
synchronous model updates and this effectively serializes
the training loop (Ruder, 2016). Thirdly, the most common
parallelization technique in DL is data parallelism (Chen
et al., 2018a), which performs serialized single instructions
on multiple data (SIMD) and the order of instructions re-
mains serialized when data is distributed across systems.

Additionally, we observe that descriptive, recognizable
operation names exist in runtime traces such as “conv”
or “gemm” and thus can be matched to operation names
in DNN model definitions to build richer annotations after
trace collection. While DL systems that produce ambiguous
operation names are emerging, as seen in JAX’s aggressive
kernel fusion (Frostig et al., 2018), this is not a new problem.
Solutions have been proposed (Gregg, 2017a), and descrip-
tive operation names will continue to be vital to effective
software development and debugging.

By relying on these observations, HOTLINE is trading off
support for several emerging applications including data-
dependent control flow, aggressive kernel fusion or ambigu-
ous operation names, and less common forms of parallelism.
However, by targeting the majority of DNN training use
cases, including cases of limited kernel fusion (see Ap-
pendix C.1), the following unique advantages are obtained.
HOTLINE’s offline analysis can generate and enrich annota-
tions (e.g., denoise) with no impact on timing measurements
and minimal instrumentation.

4.2 DNN Training Loop Annotation

The typical DNN training loop consists of the following
high-level stages: (i) data loading, (ii) the forward pass, (iii)
calculating loss, (iv) the backward pass, and (v) updating
the optimizer. It can be challenging for ML developers to
manually identify any given stage in a runtime trace because
existing trace viewers do not highlight them amongst the
many thousands of events displayed. Furthermore, traces
may not even include events demarcating these stages, as
is the case for the forward and backward passes when Py-

Torch’s low profiling overhead mode is enabled3.

To solve this problem, we build on our observations that the
execution behavior of typical DNN training loops is serial
and detectable. Our annotation algorithm searches the event
trace for recognizable names (e.g.,“dataload”, “forward”,
“loss”), and creates an annotation for that stage including
any nested events. Should any one stage not be detected,
an annotation can be made that spans in-between detected
stages or spans to the start or end of the trace. This approach
is generic enough to continue working if PyTorch changes
its trace output and flexible enough to adapt to differences
in traces produced by different DL frameworks.

4.3 DNN Model Annotation

Reconciling operations defined in DNN models to opera-
tions in the DNN training traces is non-trivial and tedious
to do manually so we have developed an algorithm to auto-
matically annotate the entire hierarchical structure of DNN
models. Figure 5 illustrates the operation of our annotation
algorithm as it traverses a graph representation of the user-
defined DNN model obtained from PyTorch. Leafs in the
graph represent DNN operations and branch nodes represent
groups of operations. For leaf nodes, the operation name
is searched for in a single pass by stepping monotonically
through time in the runtime trace and performing substring
matching on the names of CPU operations and connected
GPU operations whenever a kernel is launched. When a
match is found, an annotation is generated that includes the
operations in the runtime trace starting after the last annota-
tion and ending after the matched operation. When multiple
consecutive DNN operations have the same name, a single
annotation is produced to avoid incorrectly dividing up the
trace in this situation of ambiguity. For branch nodes, all
the runtime operations of descendent nodes in the graph are
included in a new annotation.

The forward and backward passes are detected in runtime
traces using the same algorithm, except the order of oper-
ations is reversed for the backward pass. For the forward
pass, a post-order depth-first tree traversal is used to iter-
ate over the hierarchical DNN model. For the backward
pass, a reverse pre-order depth-first tree traversal is used.
In a data-parallel training setup, each GPU will execute the
same sequence of operations allowing us to repeat the same
automatic annotation algorithm for each GPU.

A small number (n=14) of special rules were hard-coded to
assist in name matching to support automatic DNN annota-

3By low overhead mode of PyTorch’s profiler, we mean with
the stacks option disabled. This reduces the number of events
in the trace (by up to 3× for ResNet) and disables the inclusion of
a stack trace in each event. HOTLINE works better in this mode
because it doesn’t rely on stack traces so it can process events more
quickly and timing measurements will be more accurate.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Annotation made this step Position of search in traceStep of tree traversal#Legend:

Backward Pass

(c) Reverse pre-order depth-first
traversal of an example model
hierarchy.

(d) Monotonic search in runtime trace
for operations in the backward pass.

Step 1

Step 2
… … re

lu

relu

Step 3

layer1

Step 4

Step 5
model

fc

… fc…

conv

co
nv… …

Forward Pass

(a) Post-order depth-first traversal
of an example model hierarchy.

(b) Monotonic search in runtime trace
for operations in the forward pass.

Step 1
conv

m
em

of
fs

et

co
nv

Step 2
… … re

lu

relu

Step 3

layer1

Step 4
fc

… fc…

Step 5
model

…

Figure 5. HOTLINE’s offline DNN model annotation algorithm
traverses the model definition and matches operation names to
event names in the runtime trace.

tion. For example, one rule looks for the name “cudnn::bn”
in the runtime trace when the searched model operation
name is “batchnorm”. Another example is matching
“linear” to any of “addmm”, “mmbackward”, or “sgemm”.
The effort of developing these rules was extremely small.
We believe we have covered the majority of cases, and that
future addition will be trivial and not overly burdensome.

4.4 Annotation Accuracy

In practice, we were surprised by the robustness of our pro-
totype tool for automatic DNN annotation. We attribute this
robustness to our observations (Section 4.1) holding true and
to the synthetic test cases that we wrote to test functionality
and edge cases when developing our algorithms. To help
prove the correctness of HOTLINE’s automatic annotation
method we developed an accuracy evaluation system. For
ResNet, RNN, and Transformer models we systematically
compared our automatic annotations to hand-implemented
annotations of the training loop and full model architecture.
We found 97-99% accuracy of matching raw events into the
correct ML operation. We did find ambiguity at the bound-
aries of annotations, but only for insignificant, short-lived
operations (e.g., “Memset”) and had no appreciable impact
on insights. The accuracy we observed is an improvement
over a human guessing which low-level event belongs to
which high-level operation or a human expending effort

to manually insert annotations into source code and likely
making a few mistakes or omissions.

4.5 Arbitrary Annotation

Thus far we showed how HOTLINE annotates DNN concepts.
However, there remain interesting regions of runtime traces
that are not defined in DNN models or training loops. For
example, interesting sub-steps arise when using more than
one GPU because communicating between GPUs becomes
necessary (e.g., replicating a model’s learned parameters
across GPUs). ML developers may not be aware of these
stages or that they can be bottlenecks. To help users spot
important sections of DNN training without overwhelming
users with a tremendous number of raw runtime events,
HOTLINE contains a heuristic-based algorithm to detect and
annotate arbitrary sections without the need for user input
or software or hardware-specific knowledge.

HOTLINE will demarcate an annotation in the runtime trace
when (1) a series of consecutive operations are all tiny (i.e.
their runtime is below a configurable threshold relative to
its parent operation; 5% is our default), or (2) a series of
consecutive operations have the same name. This procedure
is applied recursively because we find these patterns occur at
multiple timescales within nested operations. This enables
HOTLINE to display far fewer annotations than existing trace
viewers which display all raw runtime events. Therefore it
becomes easier for developers to interpret runtime traces,
learn about the inner workings of DNN training, and identify
unexpected bottlenecks. In Appendix B.3 we show how this
feature reveals bottlenecks in data-parallel training.

5 HOTLINE: MULTI-SCALE TIMELINE

Visualization is an underappreciated part of systems re-
search. When no automated optimization solution exists
or is trusted, systems visualization assists in making subtle
determinations about what is good or bad performance. Vi-
sualization (i.e. plots, charts, and diagrams) is used through-
out the lifecycle of systems research including discovering,
validating, and communicating optimization opportunities
(Guo et al., 2015; Adhianto et al., 2010; Li et al., 2020).

Existing timeline visualizations show the entire raw trace in
one large timeline and this tends to overwhelm ML devel-
opers due to information overload, disparate granularities,
and discontiguous execution (Challenges 1-3). HOTLINE
addresses these challenges by introducing the Multi-Scale
Timeline (Richter et al., 1999), a promising visualization
technique that is well suited for navigating and interpreting
the complex timelines found in DNN training and which
may have broad utility in the field of systems profiling.

We have developed an interactive web UI, seen in Figure 1b,
that is generic enough to display any hierarchical set of

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Table 1. Size and analysis time of the workloads evaluated on 2080Ti GPU.

Model Dataset # of
GPUs

Total # of
Operations Per
Training Iter.

Raw Trace
File Size

Iteration
Time

Iteration Time
with PyTorch

Profiling

HOTLINE
Analysis

Time

HOTLINE
Generated

Annotations

ResNet-50 ImageNet
(batch=96) 1 7,406 3.8 MB 0.354 sec

±0.0%
0.356 sec,

1.01× slower 4.4 sec 324

ResNet-50 ImageNet
(batch=384) 4 23,384 10.8 MB 0.506 sec

±0.5%
0.512 sec,

1.01× slower 8.5 sec 1,073

Transformer WMT
(batch=8) 1 22,755 9.7 MB 0.355 sec

±0.1%
0.362 sec,

1.02× slower 7.3 sec 180

Transformer WMT
(batch=16) 4 72,005 27.8 MB 1.68 sec

±0.1%
1.72 sec,

1.02× slower 16 sec 636

RNN-T LibriSpeech
(batch=32) 4 941,489 266 MB 1.48 sec

±2%
2.12 sec,

1.43× slower 3 m 44 sec 602

timeline events in a multi-scale timeline. The multi-scale
timeline allows users to see multiple timescales in one view,
greatly simplifying the embedded complexity found in soft-
ware stacks. HOTLINE’s visualization uses both color and
size of annotations to make runtime bottlenecks pop out
(Goal 2: Noise Reduction). We initially show the runtime
of only the highest level operations in the DNN training
loop (Goal 3: Familiar). Users can interactively drill down
by clicking on an operation to view the runtime of the sub-
operations contained within any part of the training loop.

Existing tools use pan and zoom interaction to navigate,
which is overly burdensome on users because it requires
switching back and forth between two types of interactions
(i.e. pan and zoom separately) and make multiple adjust-
ments to view a region of interest. Instead, HOTLINE uses a
single click to perform a technique called Semantic Zoom-
ing (Aigner, 2014) to reveal details at a finer granularity and
fit them on screen. Semantic Zooming is faster, simpler, and
more exact for users (Goal 1: Easy to Navigate).

Figure 1a shows that the existing trace visualizations found
in TensorBoard can be characterized by an excessively large
number of operations and most operations names are hidden
or cut off. By contrast, HOTLINE’s multi-scale timeline
seen in Figure 1b, shows HOTLINE’s annotations without
cluttering (Goal 2: Noise Reduction) and importantly, in the
context of what happens before, after, and at multiple lev-
els of granularity. To communicate this much information
without HOTLINE, users of TensorBoard must compile mul-
tiple screenshots at different time scales or record a video
of zooming in.

6 EVALUATION

Next, we evaluate the utility of HOTLINE’s automatic an-
notation and multi-scale timeline visualization. Section 6.1
gives a summary of profiler overhead and annotation analy-
sis time for our evaluated workloads. Section 6.2 presents
in-depth case studies illustrating HOTLINE’s unique advan-
tages when used to investigate time-use bottlenecks. Finally,

Section 6.3 reports on software developers’ qualitative im-
pressions of HOTLINE’s design and shows how rapidly com-
mon performance investigation tasks can be performed.

We evaluated HOTLINE with three diverse real-world DNN
models: ResNet-50 (He et al., 2016), RNN-T (MLCom-
mons, 2021), and Transformer (Vaswani et al., 2017) with
standard batch sizes and optimizers (see Appendix B.5 for
details). We use PyTorch’s DataParallel mode for train-
ing with multiple GPUs. We performed our experiments on
a server with 4 2080Ti GPUs (NVIDIA, 2018a), an AMD
EPYC 7601 CPU (AMD, 2017), and 128 GB of RAM.

6.1 Size and Analysis Time of Workloads

Before using HOTLINE’s visualization to find time-use bot-
tlenecks, a user must first collect a runtime trace of DNN
training and analyze it using HOTLINE to generate and de-
noise annotations. Table 1 shows that the number of raw
operations collected by PyTorch in a single iteration of train-
ing can be as high as 941,489 or 266 MB in JSON format
for the RNN-T model, an inefficient model comprised of
many, short, sequential operations. HOTLINE summarizes
this trace into 602 annotations represented on disk in a 524
KB JSON results file. We found that PyTorch’s built-in
profiler can slow down iteration time by as much as 43%
for RNN-T, but for more efficient ResNet and Transformer
models by 1-2%. This is a behavior of PyTorch’s profiler
regardless of whether HOTLINE is used. The analysis time
required by HOTLINE to process these traces was under
a minute for the efficient models, but for RNN-T, a large
amount of trace data needs to be processed by our Python
analysis code, so several minutes are required. We believe
this can be sped up in future work and that it is a small
amount of time compared to the time required to observe
convergence of model accuracy in real-world DNN training.

6.2 Bottleneck Identification Case Studies

We illustrate the usefulness of HOTLINE’s annotations and
multi-scale timeline visualization through in-depth case

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

studies of ResNet-50 and RNN-T models and find oppor-
tunities to speed up training by 40% and 51% respectively.
The process by which we conduct our case studies is as
follows. First, we use HOTLINE’s multi-scale visualiza-
tion to drill down on the annotations that have the longest
runtime starting at the highest level granularity (the DNN
training loop) down to the lowest granularity (the individ-
ual GPU kernels). Then we describe what insights can be
found and how HOTLINE’s unique advantages make DNN
performance investigation faster and easier.

6.2.1 Case Study: ResNet-50 on a Single GPU

The first case study looks at the ResNet-50 model on 1
GPU, which is a common benchmark in the field of DL
(Reddi et al., 2020; Mattson et al., 2020). Appendix B.1
shows HOTLINE’s UI after a user has drilled down into the
slowest parts of a single ResNet-50 training iteration. The
bottleneck is the most striking visual aspect which is the
large and bright red operation marked backward on the
GPU0 track. Compare this experience to the one seen in
Appendix D of TensorBoard, where metrics about the DNN
training loop are not presented in the summary view or any
view, leaving users to guess about the bottleneck.

The second most striking visual aspect seen in this visu-
alization of ResNet-50 is the large, orange operation at
the lowest level of detail named wgrad alg0 engine.
HOTLINE can be an educational experience because the
user can learn what kernels are used by DL libraries and
learn that “wgrad” is an algorithm used for convolution
(Coppersmith & Winograd, 1982). When observing the
middle three levels of the multi-scale timeline, titled “2.
backward”, “3. layer2”, and “4. Bottleneck-0”,
one may note the less dramatic colors consisting of shades
of light yellow. A DNN developer might be pleased to find
this because it means they have balanced runtime similarly
across layers and groups of operations. This is an example
of how HOTLINE helps developers understand how their
choices about DNN model architecture and input data
size effects translate into actual runtime.

A user can draw on these insights to correctly conclude
that the biggest optimization opportunity is to speed up the
backward pass GPU kernels. By looking at HOTLINE’s
runtime breakdown of the training loop, it can be deduced
that the maximum possible speedup of optimization to the
GPU backward pass would be able to reduce the current
80ms runtime to 30ms, at which point the CPU portion of
the backward pass would prevent further speedup. If there
was a way to speed up the GPU kernels of the forward
and backward pass, such as with a faster GPU, end-to-end
training could be sped up by as much as 40%. We tested
a faster Nvidia 3090 GPU and found the forward pass had
within 1% number of kernels and ran them 42% faster.

6.2.2 Case Study: RNN-T on 4 GPUs

In our second case study, we look at the RNN-T model
(Graves, 2012) that is planned to be part of future MLCom-
mons benchmarks (Reddi et al., 2020; MLCommons, 2022).
Appendix B.2 shows HOTLINE after a user has drilled down
into the slowest parts of a single RNN-T training iteration.
Here we immediately see a major bottleneck at all levels
of the multi-scale timeline, which quickly points us to a
low-level cause. A benefit of using a multi-scale timeline is
that one picture explains the low-level cause of slowdown,
that 73% of the time is spent on “cudaLaunchKernel”
and “sgemm” kernels, as well as higher levels of context
for this bottleneck, that these operations take place within
LSTMs, within RNNs, within the backward pass of the
DNN training loop. Contrast this to TensorBoard, seen in
Appendix D, where the “Kernel View” would say that 46%
of GPU kernel runtime is due to “sgemm” kernels without
any of the aforementioned context and without the ability to
click on the kernel to investigate the problem deeper.

Next, we describe how HOTLINE can further assist with
rapid low-level investigations by using HOTLINE’s “Open
with Perfetto” button to isolate interesting portions of the
runtime trace and quickly switch to a more detailed pro-
filing tool. Upon inspection of the detailed runtime trace
for an LSTM operation, we see many kernel launches on
the CPU, but large idle times on the GPU (Appendix B.2).
We found this problem much faster than we would have
using Perfetto alone for two reasons. First, navigating to
the bottleneck using HOTLINE’s semantic zoom interaction
is much faster than Perfetto’s pan and zoom interaction.
Secondly, HOTLINE’s annotation isolated a single LSTM
operation within the raw trace, significantly reducing infor-
mation overload in Perfetto.

From this, a user can conclude that the biggest optimiza-
tion opportunity is to increase GPU utilization by reducing
the kernel launch overhead. Using HOTLINE to view only
the backward pass in Perfetto, we calculated that the GPU
is only executing kernels 30% of the time. Therefore, we
deduced that if an optimization could eliminate delays be-
tween kernel executions, the maximum possible speed-up of
the backward pass would be 840ms and this would speed up
end-to-end training by 51%. We found with a newer Nvidia
3090 GPU that CUTLASS was employed in the backward
RNN blocks which led to 26% fewer kernels launched and
training was 32% faster, partially resolving this bottleneck.

6.3 User Evaluation: Usability Study

To evaluate if software developers find HOTLINE useful
we conducted a user study with computer science students
recruited by convenience sampling who identified as ML
algorithm developers (n=4), ML systems developers (n=13)
or non-ML systems developers (n=5). Each participant

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Mean User Completion Time of Profiling Tasks with Hotline

C
om

pl
et

io
n

tim
e

(s
)

Avg 26s
Er

ro
r

Ra
te Avg 0.3%

20

10

0

40

30

0%
1%

T1 T2 T3 T4

Figure 6. A summary of completion times and error rates for users
performing ML profiling tasks using a HOTLINE visualization
mock-up. Error bars depict standard error.

was compensated with a $20 gift card. Participants evalu-
ated a non-interactive design mockup of HOTLINE that is
very close to what was implemented. Evaluating a mockup
allowed us to guide and validate features before implementa-
tion. After a 15-minute walkthrough of HOTLINE’s features
with a realistic ResNet-50 example, we asked skill-testing
multiple-choice questions to evaluate how well users could
perform the following profiling tasks without help:

1. What is the slowest operation on the CPU?
2. What is the fastest operation on the GPU?
3. Is runtime of the backward pass limited by GPU or CPU?
4. Which operation in “Layer 3” is best to try to speed up?

The results in Figure 6 show that, on average, each task
could be completed within roughly 30 seconds and 97%
of tasks were completed correctly. All of the participants
completed the tasks independently. Because we evaluated
on a mockup it is hard to draw quantitative conclusions. The
more important qualitative finding was that we observed
that HOTLINE’s design was well suited to the user’s task
and mental model of runtime profiling.

Next, we asked participants to rate HOTLINE’s features on a
five-point Likert scale (Likert, 1932) for each question (1 →
“Greatly confuses me”, 5 → “Greatly helps me”). Figure 7
summarizes our results, that most participants found all the
features to be greatly helpful (mean 4.31, mode 5). Then
we asked for the user’s qualitative impressions of HOTLINE
more generally. 82% (n=14/17) of participants said that
the visualization “takes less time to find insights”, and 59%
(n=10/17) of participants said that the visualization “pro-
vides more insights”, and 65% (n=11/17) were “more likely
to use the new visualization than existing visualizations.”

We feel these preliminary results are encouraging given
that, with just a brief walkthrough, participants of various
backgrounds and education levels were able to use the visu-
alization to complete profiling tasks and reported positive
impressions. While user studies are some of the time consid-
ered weak evidence (Greenberg & Buxton, 2008), they are
essential tools to understand user’s attitude towards and us-
age of technology. It has been argued that even a small num-

Neutral Helps Greatly Helps

Understand how the program works

Identify where to target optimizations

Understand program runtime

ConfusingUser Evaluation of Hotline Features

Figure 7. A summary of how useful participants found HOTLINE

on a variety of ML profiling tasks.

ber of participants covers the majority of insights (Nielsen,
2000). Despite the limited sample size, the study allowed
us to capture the user’s thought processes, workflows, and
pain points in usage. We feel the results are promising, as
findings indicate that novices can use HOTLINE to make it
easier to identify performance bottlenecks.

7 RELATED WORK

HOTLINE builds upon bodies of prior work including (1)
developer-friendly ML profiling tools (Yu et al., 2020;
Google, 2015) by providing an intuitive runtime breakdown
of ML training concepts that most developers are familiar
with; (2) analysis of ML training traces which has been ap-
plied to predict speedups of known optimizations (Hu et al.,
2022; Zhu et al., 2020), instead HOTLINE assists develop-
ers in identifying unknown latency bottlenecks; (3) novel
visualizations of execution event traces which have been
presented in the form of a tree-map (Bockisch et al., 2015),
a circular view (Cornelissen et al., 2007), and a trace sim-
ilarity view (Trümper et al., 2013) but which are different
from HOTLINE’s presentation of multiple timescales in one
view; and (4) event trace simplification techniques such as
pruning (Bohnet et al., 2009), folding (Weber et al., 2015),
and annotating at the level of program loops (Mohror &
Karavanic, 2012) have been demonstrated but these differ
from HOTLINE which leverages domain-specific knowledge
of ML training to generate simplifying trace annotations.

HOTLINE is intended to be complimentary to (1) existing
profilers provided by DL frameworks (Facebook, 2022;
Google, 2022b; Chen et al., 2015) because HOTLINE gener-
ates additional trace annotations without affecting runtime
measurements; (2) existing trace viewers (Google, 2022;
NVIDIA, 2018b; Google, 2012a) because HOTLINE pro-
vides quick navigation, easy interpretation, and can isolate
a less-overwhelming portion of the original trace to view
in an existing viewer. HOTLINE has advantages over (1)
sampling profilers such as perf (Linux, 2009), Nsight Com-
pute (NVIDIA, 2020a), or VTune (Intel, 2020) because
HOTLINE’s tracing based approach has better code coverage
and timing accuracy; (2) call graph viewers such as pprof
(Google, 2022a), Callgrind (Weidendorfer, 2022), or Flame
Graph (Gregg, 2017b) which do not present a time ordered
view and therefore lacks important context. Compared to
expert-level ML profiling tools (Li et al., 2020; Gleeson
et al., 2021; Dakkak et al., 2020), HOTLINE has a unique
focus on ease of interpretation and is more accessible to a
wider variety of skill levels.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

8 FUTURE WORK

We have presented a promising approach for visualizing
runtime profiler data to help DNN developers find and un-
derstand bottlenecks. However, there remain opportunities
to extend work in this area.

Why is it Slow?
In addition to identifying bottlenecks, HOTLINE could do
more to help users understand bottlenecks. For example,
HOTLINE could display resource utilization timelines, link
to source code and kernel instructions, or automatically
trigger more detailed profiling tools for the most time-
consuming operations, for example with Nsight Compute
(NVIDIA, 2020a). Aggregating and displaying hardware-
level metrics within HOTLINE would help users understand
why operations are slow.

Generalizing Beyond PyTorch
Implementing support for multi-scale annotation and visual-
ization of runtime traces in other DNN frameworks such as
JAX would ease the task of profiling for more users. Firstly,
it would be important to support the ONNX format (Face-
book, 2017) for model architecture information rather than
only extracting information from PyTorch Modules. ONNX
has the advantage of including information about data de-
pendencies and memory operations. However, ONNX may
lose important hierarchical information about the structur-
ing or grouping of operations such as within layers or other
high-level concepts, and the developer-friendly names of
these structures from source code may be lost. Secondly, a
framework like JAX which makes use of aggressive kernel
fusion may need additional ONNX metadata or a symbol
table to correctly associate high-level operations to their
respective low-level kernels. Support for CUDA graphs or
DNN models with conditional runtime control flow may
also require special handling.

Support for Diffs
Making it possible to compare runtimes and behavior be-
tween different ML frameworks (Jax, TensorFlow, PyTorch,
MXNet), different versions of a model, or different low-
level implementations would be incredibly valuable. This is
important because users should be able to compare to a base-
line to determine if performance has gotten better, worse, or
stayed the same. Shades of blue could represent the relative
amount of speedup and shades of red for slowdowns. Snider
(2022) shows a concept of what this could look like.

Visualization Improvements
To keep the visualization uncluttered, HOTLINE does not
depict data dependencies or control flow, but this helpful
information could be illustrated using arrows. Additionally,
to give a more compact and sophisticated view of runtime
behavior it may be beneficial to detect repeating patterns in
event traces and provide visual summaries of these.

Study More Models, Hardware, and Applications
In future work, it would be interesting to experiment by
fixing the DNN model and varying the accelerator (Nvidia
Jetson, Intel CPU, Google TPU) or varying the software
setup (CUDA or PyTorch version) to identify interesting
runtime bottlenecks that lead to poor performance. Re-
cently we evaluated more models (DLRM, GNN, and
Stable-Diffusion) and additional hardware (RTX 3090).
We have published these results in a demonstration web-
site of HOTLINE which is linked on our GitHub https:

//github.com/UofT-EcoSystem/hotline. These re-
sults include Stable-Diffusion inference which shows that
HOTLINE works for DNN inference and training. Infer-
ence works in the same way as the forward pass of training.
HOTLINE is currently designed for ML applications that
use multiple CPU processes/threads and multiple GPU de-
vices/streams. More investigation is needed for applications
with deep pipelines and applications that use more types of
resources such as storage devices, remote servers, cameras,
and other peripherals. We believe HOTLINE’s multi-scale
timeline ideas may be beneficial for profiling other com-
puter systems such as internet browsers, distributed high-
performance computing, and real-time robotics.

9 CONCLUSION

In this work, we explore a simultaneously simple and com-
plex question in DNN training, “what is slow?”. To greatly
simplify the effort required when investigating ML system
runtime traces, we propose HOTLINE. HOTLINE derives
a detailed DNN training runtime breakdown from profiler
traces in seconds. Previously, such a runtime breakdown
would take hours or days to manually investigate by a
novice because existing traces contain cryptic names, an
overwhelming number of low-level operations, and lack an-
notations of high-level ML concepts such as stage of training
or position in the DNN model. We believe we can change
ML profiling from being an afterthought or burden to being
a concern as important as hyperparameter tuning; because
profiling can have as much impact on the success of DL and
can be an enjoyable learning experience for developers too.

ACKNOWLEDGEMENTS

This project was supported by the Canada Foundation for
Innovation JELF grant, NSERC Discovery grant, AWS Ma-
chine Learning Research Award (MLRA), Facebook Fac-
ulty Research Award, Google Scholar Research Award, and
VMware Early Career Faculty Grant. We would like to
thank the MLSYS reviewers for their valuable feedback
and the artifact reviewers for reproducing our experiments.
We also thank Vasudev Sharma, Fabian Ulmer, James Glee-
son, Mickey Gabel, Nandita Vijaykumar, Gabriela Mor-
genshtern, Nicole Sultanum, Adamo Young, Geoffrey Yu,

https://github.com/UofT-EcoSystem/hotline
https://github.com/UofT-EcoSystem/hotline

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Yaoyao Ding, and Shang Wang for their support, inspiration,
and constructive feedback during the development of this
work. We also wish to thank all the participants of the user
study who helped motivate and validate this work.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., and
others. TensorFlow: a system for Large-Scale machine
learning. In 12th USENIX symposium on operating sys-
tems design and implementation (OSDI 16), pp. 265–283,
2016.

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin,
G., Mellor-Crummey, J., and Tallent, N. R. HPCToolkit:
Tools for performance analysis of optimized parallel pro-
grams. Concurrency and Computation: Practice and
Experience, 22(6):685–701, 2010. Publisher: Wiley On-
line Library.

Aigner, W. Semantic Zoom, 2014. URL https://
infovis-wiki.net/wiki/Semantic_Zoom.

AMD. EPYC™ 7601 CPU, 2017. URL https:
//www.amd.com/en/products/cpu/amd-
epyc-7601.

Amodei, D. and Hernandez, D. AI and Compute,
May 2018. URL https://openai.com/blog/
ai-and-compute/.

Andoorveedu, M., Zhu, Z., Zheng, B., and Pekhi-
menko, G. Tempo: Accelerating transformer-based
model training through memory footprint reduc-
tion. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 35, pp. 12267–12282. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
4fc81f4cd2715d995018e0799262176b-
Paper-Conference.pdf.

Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand,
S., Hurt, D., Isard, M., Lim, H., Pang, R., Roy, S., and
others. Pathways: Asynchronous distributed dataflow for
ML. Proceedings of Machine Learning and Systems, 4:
430–449, 2022.

Bianco, S., Cadene, R., Celona, L., and Napoletano, P.
Benchmark analysis of representative deep neural net-
work architectures. IEEE access, 6:64270–64277, 2018.
Publisher: IEEE.

Bockisch, C., van ’t Riet, M., Yin, H., Aksit, M., Lin,
Z., Chen, Y., and Zhao, J. Trace-Based Debugging for

Advanced-Dispatching Programming Languages. In Pro-
ceedings of the 10th Workshop on Implementation, Com-
pilation, Optimization of Object-Oriented Languages,
Programs and Systems, 2015. ISBN 978-1-4503-3657-
4. doi: 10.1145/2843915.2843922. URL https:
//doi.org/10.1145/2843915.2843922.

Bohnet, J., Koeleman, M., and Doellner, J. Visualizing
massively pruned execution traces to facilitate trace ex-
ploration. In 2009 5th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, pp.
57–64, 2009. doi: 10.1109/VISSOF.2009.5336416.

Chen, C.-C., Yang, C.-L., and Cheng, H.-Y. Efficient and ro-
bust parallel DNN training through model parallelism on
multi-GPU platform. arXiv preprint arXiv:1809.02839,
2018a.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. MXNET: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., and others.
TVM: An automated End-to-End optimizing compiler for
deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pp. 578–
594, 2018b.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,
Tran, J., Catanzaro, B., and Shelhamer, E. cuDNN:
Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Coppersmith, D. and Winograd, S. On the asymptotic com-
plexity of matrix multiplication. SIAM Journal on Com-
puting, 11(3):472–492, 1982. Publisher: SIAM.

Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van
Wijk, J. J., and van Deursen, A. Understanding Execu-
tion Traces Using Massive Sequence and Circular Bundle
Views. In 15th IEEE International Conference on Pro-
gram Comprehension (ICPC ’07), pp. 49–58, 2007. doi:
10.1109/ICPC.2007.39.

Dakkak, A., Li, C., Xiong, J., and Hwu, W.-m. MLMod-
elScope: A distributed platform for model evaluation and
benchmarking at scale. arXiv preprint arXiv:2002.08295,
2020.

Dalton, S., Frosio, I., and Garland, M. Accelerating re-
inforcement learning through gpu atari emulation. Ad-
vances in Neural Information Processing Systems, 33:
19773–19782, 2020.

https://infovis-wiki.net/wiki/Semantic_Zoom
https://infovis-wiki.net/wiki/Semantic_Zoom
https://www.amd.com/en/products/cpu/amd-epyc-7601
https://www.amd.com/en/products/cpu/amd-epyc-7601
https://www.amd.com/en/products/cpu/amd-epyc-7601
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://proceedings.neurips.cc/paper_files/paper/2022/file/4fc81f4cd2715d995018e0799262176b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4fc81f4cd2715d995018e0799262176b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4fc81f4cd2715d995018e0799262176b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4fc81f4cd2715d995018e0799262176b-Paper-Conference.pdf
https://doi.org/10.1145/2843915.2843922
https://doi.org/10.1145/2843915.2843922

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dozat, T. Incorporating nesterov momentum into adam.
2016.

Eassa, A. and Burc Eryilma, S. The Full Stack
Optimization Powering NVIDIA MLPerf Train-
ing v2.0 Performance, June 2022. URL https:
//developer.nvidia.com/blog/boosting-
mlperf-training-performance-with-
full-stack-optimization/.

Evans, J. How do Ruby & Python profilers work?, 2017.
URL https://jvns.ca/blog/2017/12/17/
how-do-ruby---python-profilers-work-
/.

Facebook. ONNX, 2017. URL https://github.com/
onnx/onnx. original-date: 2017-09-07T04:53:45Z.

Facebook. PyTorch record function Annotation, 2021. URL
https://h-huang.github.io/tutorials/
recipes/recipes/profiler_recipe.html.

Facebook. PyTorch Profiler — PyTorch Tutori-
als 1.12.0+cu102 documentation, 2022. URL
https://pytorch.org/tutorials/
recipes/recipes/profiler_recipe.html.

Frostig, R., Johnson, M. J., and Leary, C. Compiling ma-
chine learning programs via high-level tracing. Systems
for Machine Learning, 4(9), 2018. Publisher: SysML.

Gleeson, J., Gabel, M., Pekhimenko, G., de Lara, E., Kr-
ishnan, S., and Janapa Reddi, V. RL-Scope: Cross-stack
Profiling for Deep Reinforcement Learning Workloads.
Proceedings of Machine Learning and Systems, 3:783–
799, 2021.

Google. Chrome Trace Viewer, 2012a. URL https:
//www.chromium.org/developers/how-
tos/trace-event-profiling-tool/.

Google. GitHub code history google/trace-viewer,
2012b. URL https://github.com/google/
trace-viewer.

Google. TensorBoard: TensorFlow’s visualization toolkit,
2015. URL https://www.tensorflow.org/
tensorboard.

Google. Google Cloud Profiler, 2022. URL
https://cloud.google.com/profiler/
docs/about-profiler.

Google. jax.named scope, 2022. URL https:
//jax.readthedocs.io/en/latest/
_autosummary/jax.named_scope.html.

Google. Perfetto Trace Processor, 2022. URL https:
//perfetto.dev/docs/analysis/trace-
processor.

Google. pprof, October 2022a. URL https://github.
com/google/pprof.

Google. TensorFlow Profiler, July 2022b. URL https://
github.com/tensorflow/profiler. original-
date: 2020-03-10T15:58:33Z.

Graham, S. L., Kessler, P. B., and McKusick, M. K. Gprof:
A call graph execution profiler. ACM Sigplan Notices,
17(6):120–126, 1982. Publisher: ACM New York, NY,
USA.

Graves, A. Sequence transduction with recurrent neural
networks. arXiv preprint arXiv:1211.3711, 2012.

Greenberg, S. and Buxton, B. Usability evaluation con-
sidered harmful (some of the time). In Proceedings of
the SIGCHI Conference on Human Factors in Comput-
ing Systems, pp. 111–120. ACM, 2008. doi: 10.1145/
1357054.1357074.

Gregg, B. CPU Flame Graphs, 2017a. URL https:
//www.brendangregg.com/FlameGraphs/
cpuflamegraphs.html.

Gregg, B. Visualizing Performance with Flame Graphs.
Santa Clara, CA, July 2017b. USENIX Association.

Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R., Maltz,
D., Liu, Z., Wang, V., Pang, B., Chen, H., and others.
Pingmesh: A large-scale system for data center network
latency measurement and analysis. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data
Communication, pp. 139–152, 2015.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos,
G., Elsen, E., Prenger, R., Satheesh, S., Sengupta, S.,
Coates, A., and others. Deep speech: Scaling up end-to-
end speech recognition. arXiv preprint arXiv:1412.5567,
2014.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

https://developer.nvidia.com/blog/boosting-mlperf-training-performance-with-full-stack-optimization/
https://developer.nvidia.com/blog/boosting-mlperf-training-performance-with-full-stack-optimization/
https://developer.nvidia.com/blog/boosting-mlperf-training-performance-with-full-stack-optimization/
https://developer.nvidia.com/blog/boosting-mlperf-training-performance-with-full-stack-optimization/
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-/
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-/
https://jvns.ca/blog/2017/12/17/how-do-ruby---python-profilers-work-/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://h-huang.github.io/tutorials/recipes/recipes/profiler_recipe.html
https://h-huang.github.io/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://github.com/google/trace-viewer
https://github.com/google/trace-viewer
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://cloud.google.com/profiler/docs/about-profiler
https://cloud.google.com/profiler/docs/about-profiler
https://jax.readthedocs.io/en/latest/_autosummary/jax.named_scope.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.named_scope.html
https://jax.readthedocs.io/en/latest/_autosummary/jax.named_scope.html
https://perfetto.dev/docs/analysis/trace-processor
https://perfetto.dev/docs/analysis/trace-processor
https://perfetto.dev/docs/analysis/trace-processor
https://github.com/google/pprof
https://github.com/google/pprof
https://github.com/tensorflow/profiler
https://github.com/tensorflow/profiler
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Hernandez, D. and Brown, T. B. Measuring the algo-
rithmic efficiency of neural networks. arXiv preprint
arXiv:2005.04305, 2020.

Horowitz, M. computing’s energy problem (and what we
can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pp. 10–14. IEEE, 2014.

Hu, H., Jiang, C., Zhong, Y., Peng, Y., Wu, C., Zhu, Y., Lin,
H., and Guo, C. dPRO: A Generic Performance Diagno-
sis and Optimization Toolkit for Expediting Distributed
DNN Training. Proceedings of Machine Learning and
Systems, 4:623–637, 2022.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5 MB model
size. arXiv preprint arXiv:1602.07360, 2016.

Intel. VTune™ Profiler, 2020. URL https:
//www.intel.com/content/www/us/
en/developer/tools/oneapi/vtune-
profiler.html.

Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., and Hoefler, T.
Data movement is all you need: A case study on optimiz-
ing transformers. Proceedings of Machine Learning and
Systems, 3:711–732, 2021.

Joukov, N., Traeger, A., Iyer, R., Wright, C. P., and Zadok,
E. Operating System Profiling via Latency Analysis. In
OSDI, volume 6, pp. 89–102, 2006.

Kaldor, J., Mace, J., Bejda, M., Gao, E., Kuropatwa, W.,
O’Neill, J., Ong, K. W., Schaller, B., Shan, P., Viscomi,
B., and others. Canopy: An end-to-end performance
tracing and analysis system. In Proceedings of the 26th
symposium on operating systems principles, pp. 34–50,
2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

LeFebvre, W. top - Linux manual page, 1984.
URL https://man7.org/linux/man-pages/
man1/top.1.html.

Li, C., Dakkak, A., Xiong, J., Wei, W., Xu, L., and Hwu, W.-
m. XSP: Across-Stack Profiling and Analysis of Machine
Learning Models on GPUs. pp. 326–327, May 2020. doi:
10.1109/IPDPS47924.2020.00042.

Likert, R. A Technique for the Measurement of Attitudes.
In Archives of Psychology. 140, pp. 1–55, 1932.

Linux. perf, 2009. URL https://perf.wiki.
kernel.org/index.php/Main_Page.

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micike-
vicius, P., Patterson, D., Tang, H., Wei, G.-Y., Bailis, P.,
Bittorf, V., and others. MLPerf training benchmark. Pro-
ceedings of Machine Learning and Systems, 2:336–349,
2020.

MLCommons. RNN-T Model MLCommons
Training, 2021. URL https://github.
com/mlcommons/training/tree/
d0a86d67e41186835cf3f484f7e3ef00d02b820a/
rnn_speech_recognition/pytorch.

MLCommons. MLCommons Algorithmic Effi-
ciency Benchmark RNN-T implementation, 2022.
URL https://github.com/mlcommons/
algorithmic-efficiency/tree/
743fab94ddd64a42133d3542be7a75fe1c405174/
algorithmic_efficiency/workloads/
librispeech.

Mohror, K. and Karavanic, K. L. Trace profiling: Scal-
able event tracing on high-end parallel systems. Par-
allel Computing, 38(4):194–225, 2012. ISSN 0167-
8191. doi: https://doi.org/10.1016/j.parco.2011.12.
003. URL https://www.sciencedirect.com/
science/article/pii/S0167819111001852.

Muhammad, H. htop, 2004. URL https://github.
com/htop-dev/htop. original-date: 2020-08-
17T04:26:40Z.

Munzner, T. Visualization Analysis & Design,
June 2014. URL https://www.cs.ubc.ca/

˜tmm/talks/minicourse14/minicourse14-
session1.pdf.

Nielsen, J. Why you only need to test with
5 users. Alertbox, 2000. URL https:
//www.nngroup.com/articles/why-you-
only-need-to-test-with-5-users/.

Nielsen, J. Ten usability heuristics, 2005.

NVIDIA. GeForce RTX 2080 Ti Graphics Card,
2018a. URL https://www.nvidia.com/en-me/
geforce/graphics-cards/rtx-2080-ti/.

NVIDIA. Nsight Systems, March 2018b. URL https:
//developer.nvidia.com/nsight-systems.

NVIDIA. Nsight Compute, 2020a. URL
https://docs.nvidia.com/nsight-
compute/NsightCompute/index.html.

NVIDIA. The NVIDIA Tools Extension Li-
brary (NVTX), 2020b. URL http://docs.
nvidia.com/nsight-visual-studio-
edition/nvtx/index.html.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/mlcommons/training/tree/d0a86d67e41186835cf3f484f7e3ef00d02b820a/rnn_speech_recognition/pytorch
https://github.com/mlcommons/training/tree/d0a86d67e41186835cf3f484f7e3ef00d02b820a/rnn_speech_recognition/pytorch
https://github.com/mlcommons/training/tree/d0a86d67e41186835cf3f484f7e3ef00d02b820a/rnn_speech_recognition/pytorch
https://github.com/mlcommons/training/tree/d0a86d67e41186835cf3f484f7e3ef00d02b820a/rnn_speech_recognition/pytorch
https://github.com/mlcommons/algorithmic-efficiency/tree/743fab94ddd64a42133d3542be7a75fe1c405174/algorithmic_efficiency/workloads/librispeech
https://github.com/mlcommons/algorithmic-efficiency/tree/743fab94ddd64a42133d3542be7a75fe1c405174/algorithmic_efficiency/workloads/librispeech
https://github.com/mlcommons/algorithmic-efficiency/tree/743fab94ddd64a42133d3542be7a75fe1c405174/algorithmic_efficiency/workloads/librispeech
https://github.com/mlcommons/algorithmic-efficiency/tree/743fab94ddd64a42133d3542be7a75fe1c405174/algorithmic_efficiency/workloads/librispeech
https://github.com/mlcommons/algorithmic-efficiency/tree/743fab94ddd64a42133d3542be7a75fe1c405174/algorithmic_efficiency/workloads/librispeech
https://www.sciencedirect.com/science/article/pii/S0167819111001852
https://www.sciencedirect.com/science/article/pii/S0167819111001852
https://github.com/htop-dev/htop
https://github.com/htop-dev/htop
https://www.cs.ubc.ca/~tmm/talks/minicourse14/minicourse14-session1.pdf
https://www.cs.ubc.ca/~tmm/talks/minicourse14/minicourse14-session1.pdf
https://www.cs.ubc.ca/~tmm/talks/minicourse14/minicourse14-session1.pdf
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2080-ti/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
http://docs.nvidia.com/nsight-visual-studio-edition/nvtx/index.html
http://docs.nvidia.com/nsight-visual-studio-edition/nvtx/index.html
http://docs.nvidia.com/nsight-visual-studio-edition/nvtx/index.html

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
Librispeech: an asr corpus based on public domain au-
dio books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp.
5206–5210. IEEE, 2015.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., and others. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural
information processing systems, 32, 2019.

Petrenko, A., Huang, Z., Kumar, T., Sukhatme, G., and
Koltun, V. Sample factory: Egocentric 3d control from
pixels at 100000 fps with asynchronous reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 7652–7662. PMLR, 2020.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P.,
Schmuelling, G., Wu, C.-J., Anderson, B., Breughe, M.,
Charlebois, M., Chou, W., and others. MLPerf inference
benchmark. In 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pp.
446–459. IEEE, 2020.

Richter, H., Brotherton, J. A., Abowd, G. D., and Truong,
K. N. A Multi-Scale Timeline Slider for Stream Visual-
ization and Control. 1999.

Ruder, S. An overview of gradient descent optimization
algorithms. arXiv preprint arXiv:1609.04747, 2016.

Shacklett, B., Wijmans, E., Petrenko, A., Savva, M., Batra,
D., Koltun, V., and Fatahalian, K. Large batch simu-
lation for deep reinforcement learning. arXiv preprint
arXiv:2103.07013, 2021.

Sinclair, D. Trace Event Format,
2016. URL https://docs.google.
com/document/d/1CvAClvFfyA5R-
PhYUmn5OOQtYMH4h6I0nSsKchNAySU/
preview.

Snider, D. Visualizing time-use in dnn training. Masters
Thesis, University of Toronto, 2022.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in NLP. arXiv
preprint arXiv:1906.02243, 2019.

Sutton, R. The bitter lesson. Incomplete Ideas (blog), 13:
12, 2019.

Thor, B. Answer to “What’s difference between monitoring,
tracing and profiling?”, November 2012. URL https:
//serverfault.com/a/446970/247223.

Trümper, J., Döllner, J., and Telea, A. Multiscale visual
comparison of execution traces. In 2013 21st Interna-
tional Conference on Program Comprehension (ICPC),
pp. 53–62, 2013. doi: 10.1109/ICPC.2013.6613833.

Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., De-
Vito, Z., Moses, W. S., Verdoolaege, S., Adams, A., and
Cohen, A. Tensor Comprehensions: Framework-agnostic
high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, \., and Polosukhin, I. Atten-
tion is all you need. Advances in neural information
processing systems, 30, 2017.

Weber, M., Geisler, R., Brunst, H., and Nagel, W. E. Folding
Methods for Event Timelines in Performance Analysis.
In 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop, pp. 205–214, 2015. doi:
10.1109/IPDPSW.2015.47.

Weidendorfer, J. Callgrind, 2022. URL
https://valgrind.org/docs/manual/cl-
manual.html.

WMT. Second Conference on Machine Translation. 2017.
URL https://www.statmt.org/wmt17/.

Wolf, T. Training Neural Nets on Larger Batches: Practical
Tips for 1-GPU, Multi-GPU & Distributed setups,
September 2020. URL https://medium.com/
huggingface/training-larger-batches-
practical-tips-on-1-gpu-multi-gpu-
distributed-setups-ec88c3e51255.

Yu, G. X., Grossman, T., and Pekhimenko, G. Skyline: In-
teractive In-Editor Computational Performance Profiling
for Deep Neural Network Training. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software
and Technology, pp. 126–139, 2020.

Yu, G. X., Gao, Y., Golikov, P., and Pekhimenko, G.
Habitat: A runtime-based computational performance
predictor for deep neural network training. In Cal-
ciu, I. and Kuenning, G. (eds.), 2021 USENIX An-
nual Technical Conference, USENIX ATC 2021, July
14-16, 2021, pp. 503–521. USENIX Association, 2021.
URL https://www.usenix.org/conference/
atc21/presentation/yu.

Zhang, Q., Lu, H., Sak, H., Tripathi, A., McDermott, E.,
Koo, S., and Kumar, S. Transformer transducer: A stream-
able speech recognition model with transformer encoders
and RNN-t loss. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 7829–7833. IEEE, 2020.

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://serverfault.com/a/446970/247223
https://serverfault.com/a/446970/247223
https://valgrind.org/docs/manual/cl-manual.html
https://valgrind.org/docs/manual/cl-manual.html
https://www.statmt.org/wmt17/
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://www.usenix.org/conference/atc21/presentation/yu
https://www.usenix.org/conference/atc21/presentation/yu

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Zheng, B., Vijaykumar, N., and Pekhimenko, G. Echo:
Compiler-based GPU memory footprint reduction for
LSTM RNN training. In 2020 ACM/IEEE 47th Annual In-
ternational Symposium on Computer Architecture (ISCA),
pp. 1089–1102. IEEE, 2020a.

Zheng, B., Jiang, Z., Yu, C. H., Shen, H., Fromm, J., Liu,
Y., Wang, Y., Ceze, L., Chen, T., and Pekhimenko, G.
DietCode: Automatic Optimization for Dynamic Tensor
Programs. In Marculescu, D., Chi, Y., and Wu, C. (eds.),
Proceedings of Machine Learning and Systems, volume 4,
pp. 848–863, 2022.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali, A.,
Wang, Y., Yang, J., Zhuo, D., Sen, K., and others. Ansor:
Generating High-Performance Tensor Programs for Deep
Learning. In 14th USENIX symposium on operating sys-
tems design and implementation (OSDI 20), pp. 863–879,
2020b.

Zhu, H., Akrout, M., Zheng, B., Pelegris, A., Jayarajan,
A., Phanishayee, A., Schroeder, B., and Pekhimenko,
G. TBD: Benchmarking and analyzing deep neural net-
work training. In 2018 IEEE International Symposium on
Workload Characterization (IISWC), pp. 88–100. IEEE,
2018.

Zhu, H., Phanishayee, A., and Pekhimenko, G. Daydream:
Accurately Estimating the Efficacy of Optimizations for
DNN Training. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pp. 337–352, 2020.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

SUMMARY OF APPENDICES

In Appendix A, we provide instructions for reproducing our re-
sults. In Appendix B, we provide accompanying visualizations
to our evaluated case studies and two additional case studies. In
Appendix C, we provide information essential for developers look-
ing to implement profiling tools analogous to HOTLINE. In Ap-
pendix D, we describe our perceived shortcomings of TensorBoard,
a popular DNN profiling tool.

A ARTIFACT APPENDIX

A.1 Abstract

This artifact appendix includes the source code and scripts to
use HOTLINE to functionally reproduce profiling of our evalu-
ated workloads as described in section 6. More specifically, this
appendix contains instructions to generate multi-scale timeline
visualizations for ResNet50 as seen in Figure 8, RNN-T as seen
in Figure 9, Transformer as seen in Figure 12, and the workload
summary seen in Table 1. When following our instructions, the
results should be similar to the results we present in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Automatic annotation described in section 4 and

multi-scale timeline described in section 5.
• Data set: Scripts included to download CIFAR-10 to simulate

ImageNet, WMT, and a minimal LibriSpeech dataset.
• Run-time environment: Automatically managed by Docker-

files which install Ubuntu 20.04, PyTorch 1.12. We used CUDA
11.2 but also tested CUDA 12.0.

• Hardware: A single machine with 4 Nvidia GPUs. Or with
1 GPU it is possible to reproduce most of the results. We have
tested RTX 2080Ti, RTX 3090, and V100 GPUs.

• Run-time state: Sensitive to runtime state. No concurrent
workloads should be running while running experiments.

• Execution: Our scripts run PyTorch in DataParallelmode.
Other parallelism modes are not yet supported.

• Output: Multi-scale timeline visualizations of time-use for
each model evaluated (ResNet50 as seen in Figure 8, RNN-T as
seen in Figure 9, and Transformer as seen in Figure 12) and the
workload summary as seen in Table 1. You should be able to
access HTTP on port 7234 of the machine to view the Hotline
web UI for the multi-scale timeline results.

• How much disk space required (approximately)?: 30 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour to build containers and download datasets.
• How much time is needed to complete experiments (approxi-

mately)?: 30 minutes.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache 2.0
• Archived (provide DOI)?: https://doi.org/10.
5281/zenodo.7791393

A.3 Description

A.3.1 How delivered

The artifact can be downloaded either from the GitHub link
https://github.com/UofT-EcoSystem/hotline or

from the DOI link https://doi.org/10.5281/zenodo.
7791393 .

A.3.2 Hardware dependencies

We recommend a setup similar to 4 × 2080Ti GPUs, AMD EPYC
7601 CPU, and 128 GB of RAM in order to have the most similar
profiling results. If you have only 1 × GPU it is still possible to
reproduce most of the results. When using a different GPU the
training iteration runtime and the number of traced events will be
somewhat different. When using a faster GPU than a 2080Ti the
results will be more CPU-bounded. A GPU with less than 11 GB
of VRAM will need to have batch sizes reduced in the run.sh
script provided.

A.3.3 Software dependencies

We recommend using a machine with Ubuntu 20.04 and Docker
installed to reproduce the results. We tested on CUDA 11.2 but
also confirmed that some newer versions (e.g. CUDA 12.0) are
backward compatible with our experiments but produce slightly
different results. Other software packages for this artifact are
installed automatically by the provided Dockerfiles.

A.3.4 Data sets

For convenience, our scripts automatically download CIFAR-10
to simulate ImageNet, WMT, and a minimal LibriSpeech dataset.
The datasets require 10 GB of space and Docker requires 20 GB.

A.4 Installation
Start by downloading the code from the DOI or git clone
https://github.com/UofT-EcoSystem/hotline.
Then navigate to the artifact directory with cd
hotline/artifact and build the Docker containers
with bash build.sh.

A.5 Experiment workflow
Once the runtime environment has been installed, execute the
experiments with bash run.sh to generate the results which
are saved to the hotline/artifact/results directory.

A.6 Evaluation and expected result

Once the run.sh script has finished, a workload summary
table similar to Table 1 should be seen at the bottom of the
output. Secondly, browse to http://localhost:7234/
and you should see multi-scale timeline visualizations for each
model evaluated. If using a remote machine, you can for-
ward port 7234 to localhost with the command: ssh -L
7234:localhost:7234 remote . You should be able to
navigate the timeline to find results that look similar to Figure 8 for
ResNet50, Figure 9 for RNN-T, and Figure 12 for the Transformer
model.

A.7 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-
review-badging

https://doi.org/10.5281/zenodo.7791393
https://doi.org/10.5281/zenodo.7791393
https://github.com/UofT-EcoSystem/hotline
https://doi.org/10.5281/zenodo.7791393
https://doi.org/10.5281/zenodo.7791393
http://localhost:7234/
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

B EXTENDED HOTLINE VISUALIZATIONS

B.1 Case Study: ResNet-50 on a Single GPU

In the first case study, we show how HOTLINE enables ML
developers to quickly see high-level and low-level bottle-
necks. Figure 8 shows drilling down to the lowest level in
HOTLINE, where we find that ResNet-50 on 1 GPU is bottle-
necked by GPU kernel runtime and that a faster GPU could
speed up training by as much as 40% before the CPU por-
tion limits further speedup. To test this claim we executed
the same batch size on a faster Nvidia 3090 GPU and found
a single layer in the forward pass had within 1% of the same
number of kernels and ran them 42% faster. However, our
3090 GPU machine also had a faster CPU, meaning that the
possible speedup can be even higher.

Figure 8. HOTLINE drill down on the slowest operation at each
granularity for ResNet-50 (He et al., 2016) training on one GPU.
The longest and brightest segments are the backward pass at a
high-level and a GPU convolution kernel at a low-level.

B.2 Case Study: Launch Overhead in RNN-T

In the second case study, we show how HOTLINE can per-
form rapid low-level investigations by using HOTLINE’s
“Open with Perfetto” button to isolate interesting portions
of the runtime trace and open them with a tool that is com-
plimentary to HOTLINE. In Figure 9, we immediately see a
major bottleneck at all levels of the multi-scale timeline, and
a low-level cause: that that 73% of the runtime of LSTM
units is spent on “cudaLaunchKernel” and “sgemm”
kernels.

Figure 9. HOTLINE drill down on the slowest operation at each
granularity for RNN-T (Graves, 2012) training on 4 GPUs. The
longest and darkest segments indicate bottleneck locations.

Using HOTLINE to view only one LSTM unit of the back-
ward pass in Perfetto, we discovered that the GPU is only
executing kernels 30% of the time and is bottlenecked by
CUDA API launch overhead, as seen in Figure 10.

CPU

GPU

CPU

GPU

LSTM
zoomed-out

LSTM
zoomed-in

Figure 10. Manually assembled Perfetto screenshots of launch-
bound LSTM unit in the backward pass of the RNN-T model.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

(c) Hotline(b) Perfetto

(a) Abstract stages of forward pass with PyTorch.DataParallel training

Scatter Replicate Forward Computation Gather

Figure 11. The major stages of the forward pass in PyTorch’s DataParallel training mode are seen in three ways: (a) conceptual
diagram (Wolf, 2020), (b) runtime trace in Perfetto of ResNet-50 on 4 GPUs, (c) and the same trace visualized with HOTLINE where the
sections have been automatically detected. We have muted original colors and drawn colored boxes by hand.

B.3 Case Study: Bottlenecks in Data Parallel Training

In the third case study, we show how HOTLINE’s annotation
of arbitrary sections of training enabled us to find unex-
pected bottlenecks. Figure 11a illustrates the stages that
PyTorch’s default DataParallel training mode takes
under the hood during the forward pass. In Figure 11b, we
manually draw a different colored box for each stage, but
without this, these stages are hard to observe when viewing
the raw trace in Perfetto. In Figure 11c, HOTLINE has au-
tomatically detected these stages and displayed a compact
summary. Using HOTLINE, we found that when training
ResNet-50 on 4 GPUs, PyTorch spends 67% of the forward
pass replicating the DNN model to all GPUs and 50% of
the backward pass reducing gradients onto 1 GPU from the
other 3 GPUs. Together, this accounts for 51% of end-to-
end training time. This may be a surprise to users who are
not aware of these stages or that they are so slow.

B.4 Case Study: Transformer Model

In the fourth case study, we show how HOTLINE can help
ML developers understand the structure of DNN models
and the operation of DNN training. Figure 12 shows the
slowest operations of training a Transformer model on 4
GPUs. We observe two unique differences compared to
ResNet-50 and RNN-T training: the “Calc Loss” step

is a more expensive operation, and the “Loss Gradient”
operation (performed on all GPUs) triggers expensive inter-
GPU “Scatter” and “Gather” operations and we question
whether this is optimal.

Figure 12. HOTLINE drill down on the slowest operation at each
granularity for Transformer (Zhang et al., 2020) training on 4
GPUs. The backward pass is slowed by NCCL operations respon-
sible for reducing gradients from all GPUs onto one GPU.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Figure 13. HOTLINE drill down of GPU runtime only on the model
architecture of a Transformer-small model training on a single
GPU. A Transformer-small is representative of the Transformer
model but has been shrunk for demonstration purposes from 6
layers per encoder/decoder to 2 layers, and from 16 attention heads
to 2.

Next, we discuss how HOTLINE helps ML developers under-
stand the structure and runtime of the Transformer model on
a single GPU. Level “2. Backward” in Figure 13 shows
that at the highest level the Transformer model is com-
posed of an encoder, decoder, and a last linear layer. Note
that in a full-sized Transformer model, the linear layer
would have a smaller proportion of runtime because the
encoder and decoder would have more layers and heads.
Level “3. Decoder” is composed of a shared embed-
ding, positional encoder, and the decoder itself which is
responsible for the majority of runtime at this level. Level
“4. TransformerDecoder” is composed of 2 identical
decoder layers. Level “5. TransformerDecoderLayer”
is composed of several layer norm and dropout oper-
ations, two multi-head attention units, and a feedfor-
ward network made of relu and linear operations. Level
“6. MultiheadAttention” is composed of three linear
operations, a scaled dot product attention (the group of
shorter operations), and a final linear operation.

B.5 Extended Methodology

Here we provide additional details about the models and
training parameters used in our case studies. While we
did not train until model convergence because HOTLINE

only needs one sample of training iteration (after a user-
defined number of warmup iterations), we did select realistic
training parameters unless otherwise specified. We carefully
selected a diverse set of models, i.e. ResNet-50, RNN-T,
and Transformer, to represent important DL subfields and
model architectures.

The ResNet-50 (He et al., 2016) model has 23 million pa-
rameters and we applied it to image classification on the
ImageNet dataset (Deng et al., 2009). For training ResNet-
50 we used a batch size of 256 and stochastic gradient
descent (SGD) with momentum and weight decay.

The RNN-T (MLCommons, 2021; Graves, 2012) model
has 57 million parameters (Zhang et al., 2020) and is for
speech-to-text recognition on the LibriSpeech100 dataset
(Panayotov et al., 2015). For training RNN-T we used Adam
(Kingma & Ba, 2014) with a batch size of 8, less than the
standard 256 batch size to fit on our GPU. RNN-T training
typically involves many operations on small vectors (Zheng
et al., 2020a) and is memory capacity-bounded (Zhu et al.,
2018).

The Transformer (Vaswani et al., 2017) model has 209 mil-
lion parameters in our configuration of 6 layers in the de-
coder and encoder, 16 heads per multi-head attention unit,
and 4096 hidden units in the feedforward network. We ap-
plied it to language translation on the WMT dataset (WMT,
2017) and trained using Adam (Kingma & Ba, 2014) with a
batch size of 32, less than the standard 128 batch size to fit
on our GPU.

C HOTLINE IMPLEMENTATION DETAILS

C.1 Limited Support for Kernel Fusion

A challenge arises when multiple operations in the DNN
model definition, e.g., Conv and Relu, map to the same GPU
kernel (i.e. kernel fusion). This is the case for the kernel,
“volta scudnn winograd 128x128 ldg1 ldg4 relu
tile148t nt v1”, which is found in the forward pass of
ResNet-50. To address this challenge, HOTLINE supports
detecting arbitrary combinations of DNN model operation
names in the same GPU kernel name. Further research is
required to support JIT compilation as in JAX (Frostig et al.,
2018) where all JIT-compiled kernels have the same name,
however, this is not a new problem in the field of profiling
and one solution is to use symbol tables (Gregg, 2017a).

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

C.2 Noise Reduction

A primary motivation of our paper is that existing runtime
trace viewers fail to convey useful information due to infor-
mation overload (Bohnet et al., 2009; Weber et al., 2015).
As such, we have designed a suite of heuristics that trade
completeness of information for quick and useful interpre-
tation. In Section 4, we introduced techniques to group the
majority of runtime trace events into more digestible and
often familiar annotations. Before presenting annotations to
the user, we apply the following noise reduction heuristics.
Users can forgo the following modifications by using HOT-
LINE UI’s “Open with Perfetto” button to view the original
trace within any annotation when needed.

Rename. Operation names in runtime traces often include
file paths, symbols, or repetitive boilerplate. HOTLINE
uses simple rules to rename operations to be more concise
(examples in Appendix C.3).

Summarize. When HOTLINE generates an arbitrary anno-
tation for a group of operations as described in Section 4.5,
HOTLINE also generates a summarizing name based on the
runtime contribution of the constituent operations. For ex-
ample a name of, “A(60%) and 5 others...”, would mean that
this annotation contains 6 unique operation names, with “A”
dominating runtime the most, at 60% of runtime.

Hide. When multiple accelerators are used in parallel for
DNN training it may be overwhelming to display them all
to users. By default, HOTLINE’s UI will only display the
accelerator with the longest runtime, i.e. the straggler, and
the user can reveal the others with a checkbox (shown in
Appendix C.5).

Name Placement. Existing trace viewers will cut-off opera-
tion names that do not fit on-screen. HOTLINE prevents this
by taking into account the user’s screen size to calculate a
non-overlapping placement of operation names (details in
Appendix C.4).

Align Timelines. Due to asynchronous GPU execution
(Challenge 3), the CPU and GPU portions for a single oper-
ation are commonly very distant in DNN training timelines,
leading to a poor viewing experience. HOTLINE’s UI com-
pensates for this by aligning the CPU and GPU portions to
make them appear to start at the same time. A icon is
displayed to indicate this adjustment.

C.3 Renaming Operations To Be More Concise

To simplify the interpretation of runtime traces for develop-
ers, one technique in HOTLINE’s suite of noise reduction
heuristics is renaming operations to be more concise by
removing file paths, symbols, or repetitive boilerplate. Fig-
ure 14 shows several examples in which the length of CPU
operation names has been reduced by 65% and GPU oper-
ation names reduced by 22%. Original names can still be
viewed using HOTLINE’s “Open with Perfetto” button.

|--+----------------------------|
| Operation Name | Hotline Renamed |
|--+----------------------------|
| torch/utils/data/dataloader.py(1173): _get_data | _get_data dataloader.py |
|--+----------------------------|
| torch/nn/parallel/comm.py(188): <listcomp> | listcomp comm.py |
|--+----------------------------|
| typing.py(306): inner | inner typing.py |
|--+----------------------------|
| <built-in method acquire of | acquire SemLock |
| _multiprocessing.SemLock object at 0x7f86f5bc91f0> | |
|--+----------------------------|
| <built-in method _scatter of PyCapsule object at | _scatter PyCapsule |
| 0x7f8801ea3f90> | |
|--+----------------------------|
| <string>(1): <lambda> | lambda string |
|--+----------------------------|
| <built-in function print> | print |
|--+----------------------------|

(a) CPU Operations
|--+--|
| Operation Name | Hotline Renamed |
|--+--|
void at::native::vectorized_elementwise_kernel<4,	vectorized_elementwise_kernel<4,
at::native::CUDAFunctor_add<float>,	CUDAFunctor_add<float>, Array<char*, 3>
at::detail::Array<char*, 3> >(int,	>(int, CUDAFunctor_add<float>,
at::native::CUDAFunctor_add<float>,	Array<char*, 3>)
at::detail::Array<char*, 3>)	
--+--	
void wgrad_alg0_engine<float, 128, 6, 8, 3, 3, 5,	wgrad_alg0_engine<float, 128, 6, 8, 3,
false, 512>(int, int, int, float const*, int,	3, 5, false, 512>(int, int, int, float
float*, float const*, kernel_grad_params, unsigned	const*, int, float*, float const*,
long long, int, float, int, int, int, int)	kernel_grad_params, unsigned long long,
	int, float, int, int, int, int)
--+--	
void at::native::vectorized_elementwise_kernel<4,	vectorized_elementwise_kernel<4,
at::native::BinaryFunctor<float, float, float, at:	BinaryFunctor<float, float, float, thres
:native::threshold_kernel_impl<float>(at::TensorIt	hold_kernel_impl<float>(TensorIteratorBa
eratorBase&, float, float)::{lambda(float,	se&, float, float)::{lambda(float,
float)#1}>, at::detail::Array<char*, 3> >(int,	float)#1}>, Array<char*, 3> >(int,
at::native::BinaryFunctor<float, float, float, at:	BinaryFunctor<float, float, float, thres
:native::threshold_kernel_impl<float>(at::TensorIt	hold_kernel_impl<float>(TensorIteratorBa
eratorBase&, float, float)::{lambda(float,	se&, float, float)::{lambda(float,
float)#1}>, at::detail::Array<char*, 3>)	float)#1}>, Array<char*, 3>)
--+--	

(b) GPU Operations

Figure 14. Examples of HOTLINE renaming operations to be more
concise. Bold text indicates what is retained.

C.4 Non-Overlapping Label Placement

Existing trace viewers will cut-off operation names that do
not fit on-screen. We designed an algorithm for HOTLINE
to intelligently place names nearby when they cannot fit
inside the operation’s displayed box as seen in Figure 15.
The algorithm takes into account the user’s screen size to
calculate a non-overlapping placement before drawing and
will react dynamically to the user resizing their screen.

Figure 15. HOTLINE calculates non-overlapping label placement
using the dimensions annotated in red.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

(c) Operation “calc_loss” opened with the Perfetto.(a) Operation “forward” with all hardware resources revealed.

(b) Matching search results
animate with bounce effect.

Figure 16. Illustration of HOTLINE’s interactive features.

C.5 Interactive Features

To assist ML developers in finding and understanding time-
use bottlenecks in DNN training, we developed three interac-
tive features shown in Figure 16. Specifically, (a) “Display
Only Longest” summarizes complex parallelized timelines
for faster understanding, (b) “Search” helps users find oper-
ations of interest, and (c) “Open with Perfetto” helps users
understand bottlenecks by displaying the most detailed view
of raw events. Next, we describe these features in more
detail.

Display Only Longest: To address the challenge of infor-
mation overload in DNN training runtime traces, HOTLINE
will only display the longest resource per type by default,
i.e. the straggler. That means if there are 4 GPUs, only
the GPU with the longest runtime will be displayed. We
believe it is a reasonable default for data-parallel training
(the most common technique for multi-GPU training) be-
cause the same operations repeat on all GPUs and the only
difference between them is runtime.

Search: If a user knows what they want to investigate,
they can search. Operations will turn red and animate with
a bounce effect when the search term partially matches the
annotation name or exactly matches any raw event contained
within the annotation.

Failing Gracefully: Users can click the “Open with Per-
fetto” button to display the raw events for any annotation.
This is useful when there are too many operations to display
in HOTLINE or when users want an exact representation
of the runtime trace without summarization or other noise
reduction techniques. HOTLINE and Perfetto are good at
different things, the former is digestible and the latter exact.
This integration makes it possible to quickly switch between
tools and get the best of both. Future integration with Nsight
Compute for resource utilization is planned.

D LIMITATIONS OF TENSORBOARD

Each DL framework has a different profiler to collect per-
formance data, but the most popular visualization tool is
TensorBoard (Google, 2015) because it is officially sup-
ported by the three most popular DL frameworks: Tensor-
flow (Abadi et al., 2016), PyTorch (Paszke et al., 2019), and
Jax (Frostig et al., 2018). Here we explain the shortcomings
of TensorBoard which make it difficult to use and help to
motivate HOTLINE.

What’s wrong with TensorBoard? As seen in Figure 17a-e,
donut charts and timelines are the most used visualizations
in this tool. However, neither of these methods works well
when there are too many data points, as is common in DNN
training, which consists of many thousands of operations.
Secondly, the TensorBoard interface is not meaningful to
ML developers because the aggregated performance metrics
lack DNN training concepts that are familiar to ML devel-
opers. The DNN training loop is not expressed anywhere
and the DNN model hierarchy is visualized poorly in the
Module View (Figure 17e) for two reasons. First, the model
hierarchy shown does not include user-defined names of
DNN layers or operations which would be more informative
than using PyTorch class names like “Sequential”. Secondly,
Module View’s table and timelines give a poor sense of how
time is spent because colors are not used effectively. The
trace viewer (Figure 17d) used in TensorBoard is cluttered
and hard to navigate. It was originally developed in 2012
(Google, 2012b) and has not seen much progress since. Fi-
nally, TensorBoard’s various pages of profiler data are
disconnected from each other; one cannot click on an
operation to see the corresponding information in another
view.

These problems in the most popular DNN performance
visualization tool help to motivate our research on new per-
formance investigation techniques for ML developers.

Hotline Profiler: Automatic Annotation and A Multi-Scale Timeline for Visualizing Time-Use in DNN Training

Summary View
(a)

gX gX

Trace View
(d)

Diff View
(f)

Operator View
(b)

Kernel View
(c)

Module View
(e)

gX gX

Figure 17. Visualizations in TensorBoard for PyTorch’s Profiler.

